精英家教网 > 高中数学 > 题目详情
设数列{an}中,an=1+2+3+…+n(n∈N*),将{an}中5的倍数的项依次记为b1,b2,b3,…,
(I)求b1,b2,b3,b4的值.
(II)用k表示b2k-1与b2k,并说明理由.
(III)求和:b1+b2+b3+…+b2n-1+b2n
(I)∵an=1+2+3+…+n=
n(n+1)
2

由题意可得,b1=a4=10,b2=a5=15,b3=a9=45,b4=a10=55;
(II)∵an=
n(n+1)
2
=5m(m∈N+)

∴n=5k或n+1=5k(k∈N+),
即n=5k-1或n=5k
∵b2k-1<b2k
b2k-1=a5k-1=
5k(5k-1)
2
b2k=a5k=
5k(5k+1)
2

(III)由(II)可得,b2n-1+b2n=
5n(5n-1)+5n(5n+1)
2
=25n2
∴b1+b2+…+b2n=(b1+b2)+(b3+b4)+…+(b2n-1+b2n
=25×12+25×22+…+25n2
=25(12+22+…+n2
b1+b2+…+b2n=
25
6
n(n+1)(2n+1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}中,若an+1=an+an+2,(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出该6项之和;
(2)在“凸数列”{an}中,求证:an+6=an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}中,若an+1=an+an+2,(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出该6项之和;
(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2010项和S2010

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}中,a1=1,an+1=
an
1+2an
,则a2012=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}中,a1=2,an+1=2an+3,则通项an可能是(  )

查看答案和解析>>

同步练习册答案