【题目】已知函数
.
(1)当
时,求函数
的最值;
(2)求函数
的单调区间;
(3)试说明是否存在实数
使
的图象与
无公共点.
科目:高中数学 来源: 题型:
【题目】随机将1,2,…,2n(n∈N* , n≥2)这2n个连续正整数分成A、B两组,每组n个数,A组最小数为a1 , 最大数为a2;B组最小数为b1 , 最大数为b2;记ξ=a2﹣a1 , η=b2﹣b1 .
(1)当n=3时,求ξ的分布列和数学期望;
(2)C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);
(3)对(2)中的事件C,
表示C的对立事件,判断P(C)和P(
)的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈(﹣
,
)
(1)当a=
,θ=
时,求f(x)在区间[0,π]上的最大值与最小值;
(2)若f(
)=0,f(π)=1,求a,θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
:
的离心率
,且椭圆
上一点
到点
的距离的最大值为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
为抛物线
:
上一动点,过点
作抛物线
的切线交椭圆
于
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn,且2a5-a3=13,S4=16.
(1)求数列{an}的前n项和Sn;
(2)设Tn=
(-1)iai,若对一切正整数n,不等式 λTn<[an+1+(-1)n+1an]·2n-1 恒成立,求实数 λ 的取值范围;
(3)是否存在正整数m,n(n>m>2),使得S2,Sm-S2,Sn-Sm成等比数列?若存在,求出所有的m,n;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,|an+1﹣an|=pn , n∈N* .
(1)若{an}是递增数列,且a1 , 2a2 , 3a3成等差数列,求p的值;
(2)若p=
,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
![]()
对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间
,
,
,
,
进行分组,得到频率分布条形图如图.
![]()
(1)求图中
的值;
(2)空气质量状况分别为轻微污染或轻度污染定为空气质量Ⅲ级,求一年中空气质量为Ⅲ级的天数
(3)小张到该城市出差一天,这天空气质量为优良的概率是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com