精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求函数的最值;

(2)求函数的单调区间;

(3)试说明是否存在实数使的图象与无公共点.

【答案】(1)最小值为 ;(2)见解析;(3)见解析.

【解析】

1)利用导数研究函数单调性,再根据单调性确定函数最值,(2)先求导数,再根据导函数零点分类讨论,最后根据导函数符号确定单调性,(3)先求函数最小值,再利用导数求最小值的最大值,最后与比较大小即得结果.

(1)函数的定义域是.

时,,所以为减函数,

为增函数,所以函数的最小值为.

(2)

时,则恒成立,所以的增区间为.

,则,故当

时,

所以的减区间为的增区间为.

(3)时,由(2)知的最小值为

,所以上单调递减,

所以,则

因此存在实数使的最小值大于

故存在实数使的图象与无公共点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在锐角中,角所对的边分别为,且

(1)求角大小;

(2)当时,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知函数

(I)当时,求函数的单调区间;

(II)当时,若对于区间上的任意两个不相等的实数,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机将1,2,…,2n(n∈N* , n≥2)这2n个连续正整数分成A、B两组,每组n个数,A组最小数为a1 , 最大数为a2;B组最小数为b1 , 最大数为b2;记ξ=a2﹣a1 , η=b2﹣b1
(1)当n=3时,求ξ的分布列和数学期望;
(2)C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);
(3)对(2)中的事件C, 表示C的对立事件,判断P(C)和P( )的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈(﹣
(1)当a= ,θ= 时,求f(x)在区间[0,π]上的最大值与最小值;
(2)若f( )=0,f(π)=1,求a,θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆 的离心率,且椭圆上一点到点的距离的最大值为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设 为抛物线 上一动点,过点作抛物线的切线交椭圆两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,且2a5a3=13,S4=16.

(1)求数列{an}的前n项和Sn

(2)设Tn(-1)iai,若对一切正整数n,不等式 λTn<[an1+(-1)n1an]·2n1 恒成立,求实数 λ 的取值范围;

(3)是否存在正整数mn(nm2),使得S2SmS2SnSm成等比数列?若存在,求出所有的mn;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,|an+1﹣an|=pn , n∈N*
(1)若{an}是递增数列,且a1 , 2a2 , 3a3成等差数列,求p的值;
(2)若p= ,且{a2n1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:

对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间进行分组,得到频率分布条形图如图.

(1)求图中的值;

(2)空气质量状况分别为轻微污染或轻度污染定为空气质量Ⅲ级,求一年中空气质量为Ⅲ级的天数

(3)小张到该城市出差一天,这天空气质量为优良的概率是多少?

查看答案和解析>>

同步练习册答案