精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知正方体ABCD-A1B1C1D1的棱长为1,点P在棱BB1上运动(不含B,B1两点),求△APC1的面积S的最小值.
分析:建立空间直角坐标系后,设PB1=t,在AC1上任取一点Q,要使△APC1的面积S最小,必有
PQ
AC1
PQ
B1B

求点P,Q的坐标后,即可求出三角形高的最小值,由此可求S的最小值.
解答:解:以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴建立空间直角坐标系,
设PB1=t(0<t<1),则A(1,0,1),C1(0,1,0),P(1,1,t),在AC1上任取一点Q(a,b,c),
AQ
AC1
,得(a-1,b,c-1)=λ(-1,1,-1),
∴a=1-λ,b=λ,c=1-λ,
令x=1-λ,有Q(x,1-x,x),又
AC1
=(-1,1,-1)
B1B
=(0,0,1)
PQ
=(x-1,-x,x-z)

当△APC1的面积S的最小时,|
PQ
|
最小,必有
PQ
AC1
PQ
B1B

PQ
AC1
=0
PQ
B1B
=0
,∴
(x-1,-x,x-t)•(-1,1,-1)=0
(x-1,-x,x-t)•(0,0,1)=0
1-3x+t=0
x-t=0

解得x=t=
1
2
,这时|
PQ
|
=|(-
1
2
,-
1
2
,0)|=
2
2
,即|
PQ
|≥
2
2
,又|
AC1
|=
3

∴△APC1的面积S=
1
2
|
AC1
|•|
PQ
|≥
6
4
,即△APC1的面积S的最小值为
6
4
点评:本题考点是点、线、面间的距离的计算,由于本题易于建立空间直角坐标系求距离,进而求△APC1的面积,所以选用了“坐标法”,但要注意过程中的细节处理,尽一切可能的降低运算量,如令x=1-λ.若用“几何法”,易产生漏洞,因位置关系判断不准而致求△APC1的面积出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、如图,已知正方体ABCD-A1B1C1D1的棱长为3,点E,F在线段AB上,点M在线段B1C1上,点N在线段C1D1上,且EF=1,D1N=x,AE=y,M是B1C1的中点,则四面体MNEF的体积(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点.
求:
(1)D1E与平面BC1D所成角的正弦值;
(2)二面角D-BC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,E、F分别是D1C、AB的中点.
(I)求证:EF∥平面ADD1A1
(Ⅱ)求二面角D-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.
(1)求证:B1D⊥平面PQR;
(2)设二面角B1-PR-Q的大小为θ,求|cosθ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)如图,已知正方体ABCD-A1B1C1D1 的棱长为2,E,F分别是BB1,CD的中点.
(1)求三棱锥E-AA1F的体积;
(2)求异面直线EF与AB所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

同步练习册答案