精英家教网 > 高中数学 > 题目详情
如图所示,在正三棱柱ABC-A1B1C1中,底面边长是2 ,D 是棱BC 的中点,点M 在棱BB1上,且BM=B1M,又CM⊥AC1
(Ⅰ)求证:A1B∥平面AC1D;
(Ⅱ)求三棱锥B1-ADC1体积。
解:(I)证明:连接A1C,交AC1于点E,连接DE,
则DE是△A1BC的中位线,
∴DE∥A1B,
又DE?平面AC1D,A1B?平面AC1D,
∴A1B平面∥AC1D;
(II)在正三棱柱ABC-A1B1C1中,D是棱BC的中点,
则AD⊥平面BCC1B1
∴AD⊥MC,
∵CM⊥AC1,AC1∩AD=A
∴CM⊥平面AC1
∴CM⊥C1D,
∴∠CDC1与∠MCB互余
∴tan∠CDC1与tan∠MCB互为倒数
∵BM=B1M,底面边长是2
∴AA1=2
连接B1D,
则S△B1C1D=2
∵AD⊥平面DC1B1,AD=
∴三棱锥B1-ADC1体积等于三棱锥A-B1DC1体积=×2×=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在正三棱柱ABC-A1B1C1中,底面边长是2,D是棱BC的中点,点M 是棱BB1的中点,又CM⊥AC1
(Ⅰ)求证:A1B∥平面AC1D;
(Ⅱ)求二面角C-AC1-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在正三棱柱ABC-A1B1C1中,底面边长为a,侧棱长为
2
2
a
,D是棱A1C1的中点.
(Ⅰ)求证:BC1∥平面AB1D;
(Ⅱ)求二面角A1-AB1-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正三棱柱ABC-A1B1C1中,所有棱长均为1,求点B1到平面ABC1的距离.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正三棱柱ABC-A1B1C1中,底面边长是2,D是棱BC的中点,点M在棱BB1上,且BM=
13
B1M,又CM⊥AC1
(Ⅰ)求证:A1B∥平面AC1D;
(Ⅱ)求三棱锥B1-ADC1体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)如图所示,在正三棱柱ABC-A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点.
(I)求证:A1B1∥平面ABD;
(II)求证:AB⊥CE;
(III)求三棱锥C-ABE的体积.

查看答案和解析>>

同步练习册答案