【题目】函数
的图象形如汉字“囧”,故称其为“囧函数”.
下列命题:
①“囧函数”的值域为
;
②“囧函数”在
上单调递增;
③“囧函数”的图象关于
轴对称;
④“囧函数”有两个零点;
⑤“囧函数”的图象与直线
至少有一个交点.其中正确命题的个数为( )
A. 1 B. 2
C. 3 D. 4
科目:高中数学 来源: 题型:
【题目】某次战役中,狙击手A受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A每次射击,命中机首、机中、机尾的概率分别为0.2、0.4、0.1,未命中敌机的概率为0.3,且各次射击相互独立。若A至多射击两次,则他能击落敌机的概率为( )
A. 0.23 B. 0.2 C. 0.16 D. 0.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,底面
是直角梯形,
,
,
,侧面
底面
,且
是以
为底的等腰三角形.
(Ⅰ)证明:![]()
(Ⅱ)若四棱锥
的体积等于
.问:是否存在过点
的平面
分别交
,
于点
,使得平面
平面
?若存在,求出
的面积;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学家刘徽是公元三世纪世界上最杰出的数学家,他在《九章算术圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法.所谓“割圆术”,即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率(圆周率指圆周长与该圆直径的比率).刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径![]()
,此时圆内接正六边形的周长为![]()
,此时若将圆内接正六边形的周长等同于圆的周长,可得圆周率为3,当用正二十四边形内接于圆时,按照上述算法,可得圆周率为__________.(参考数据: ![]()
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,已知曲线
,将曲线
上所有点横坐标,纵坐标分别伸长为原来的
倍和
倍后,得到曲线![]()
(1)试写出曲线
的参数方程;
(2)在曲线
上求点
,使得点
到直线
的距离最大,并求距离最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列5个命题中正确命题的个数是( )
①对于命题p:x∈R,使得x2+x+1<0,则綈p:x∈R,均有x2+x+1>0;
②m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则线性回归方程为
=1.23x+0.08;
④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为
;
⑤曲线y=x2与y=x所围成图形的面积是S= (x-x2)dx.
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
经过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
是椭圆上的点,直线
与
(
为坐标原点)的斜率之积为
.若动点
满足
,试探究是否存在两个定点
,使得
为定值?若存在,求
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数(
,简称
)是定量描述空气质量状况的无量纲指数,参与空气质量评价的主要污染物为
等六项.空气质量按照
大小分为六级:一级
为优;二级
为良好;三级
为轻度污染;四级
为中度污染;五级
为重度污染;六级
为严重污染.
某人根据环境监测总站公布的数据记录了某地某月连续10天
的茎叶图如图所示:
![]()
(1)利用访样本估计该地本月空气质量优良(
)的天数;(按这个月总共30天计算);
(2)若从样本中的空气质量不佳(
)的这些天中,随机地抽取三天深入分析各种污染指标,求这三天的空气质量等级互不相同的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com