【题目】如图,已知抛物线x2=y,点A(﹣
,
),B(
,
),抛物线上的点P(x,y)(﹣
<x<
),过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求|PA||PQ|的最大值.![]()
【答案】解:(Ⅰ)由题可知P(x,x2),﹣
<x<
,
所以kAP=
=x﹣
∈(﹣1,1),
故直线AP斜率的取值范围是:(﹣1,1);
(Ⅱ)由(I)知P(x,x2),﹣
<x<
,
所以
=(﹣
﹣x,
﹣x2),
设直线AP的斜率为k,则AP:y=kx+
k+
,BP:y=﹣
x+
+
,
联立直线AP、BP方程可知Q(
,
),
故
=(
,
),
又因为
=(﹣1﹣k,﹣k2﹣k),
故﹣|PA||PQ|=
=
+
=(1+k)3(k﹣1),
所以|PA||PQ|=(1+k)3(1﹣k),
令f(x)=(1+x)3(1﹣x),﹣1<x<1,
则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),
由于当﹣1<x<﹣
时f′(x)>0,当
<x<1时f′(x)<0,
故f(x)max=f(
)=
,即|PA||PQ|的最大值为
.
【解析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣
<x<
可得结论;
(Ⅱ)通过(I)知P(x,x2)、﹣
<x<
,设直线AP的斜率为k,联立直线AP、BP方程可知Q点坐标,进而可用k表示出
、
,计算可知|PA||PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.
【考点精析】本题主要考查了函数的最大(小)值与导数和斜率的计算公式的相关知识点,需要掌握求函数
在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值;给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k=y2-y1/x2-x1才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)若广告费与销售额具有相关关系,求回归直线方程;
(2)在已有的五组数据中任意抽取两组,求两组数据其预测值与实际值之差的绝对值都不超过5的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知
,
,动点
满足
,设动点
的轨迹为曲线
.
(1)求动点
的轨迹方程,并说明曲线
是什么图形;
(2)过点
的直线
与曲线
交于
两点,若
,求直线
的方程;
(3)设
是直线
上的点,过
点作曲线
的切线
,切点为
,设
,求证:过
三点的圆必过定点,并求出所有定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0,
)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】校运动会高二理三个班级的3名同学报名参加铅球、跳高、三级跳远3个运动项目,每名同学都可以从3个运动项目中随机选择一个,且每个人的选择相互独立.
(1)求3名同学恰好选择了2个不同运动项目的概率;
(Ⅱ)设选择跳高的人数为
试求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏
B.3盏
C.5盏
D.9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1﹣xn≤
;
(Ⅲ)
≤xn≤
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有( )
A. 24种 B. 28种 C. 32种 D. 36种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com