精英家教网 > 高中数学 > 题目详情

【题目】已知斜率为的直线与椭圆交于两点,线段的中点为

(1)证明:

(2)设的右焦点,上一点,.证明:成等差数列,并求该数列的公差.

【答案】(1)

(2)

【解析】分析:(1)设而不求,利用点差法进行证明。

(2)解出m,进而求出点P的坐标,得到,再由两点间距离公式表示出,得到直的方程,联立直线与椭圆方程由韦达定理进行求解。

详解:(1)设,则.

两式相减,并由

.

由题设知,于是

.①

由题设得.

(2)由题意得,设

.

(1)及题设得.

又点PC上,所以从而.

于是

.

同理.

所以.

成等差数列.

设该数列的公差为d,则

.②

代入①得.

所以l的方程为代入C的方程,并整理得.

代入②解得.

所以该数列的公差为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】5名男生和4名女生中选出4人参加辩论比赛.

1)如果男生中的甲与女生中的乙至少要有1人在内,那么有多少种不同选法?

2)如果4个人中既有男生又有女生,那么有多少种不同选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20141月至201612月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是(

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在78

D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的最小值;

(2)当时,若存在,使得对任意的,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数yfx),若在其定义域内存在x0,使得x0fx0)=1成立,则称函数fx)具有性质M

1)下列函数中具有性质M的有____

fx)=﹣x+2

fx)=sinxx[02π]

fx)=x,(x∈(0+∞))

fx

2)若函数fx)=a|x2|1)(x[1+∞))具有性质M,则实数a的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作已知直线的平行线,交双曲线于点.

(1)证明:Q是线段MN的中点;

(2)分别过点M、N作双曲线的切线,证明:三条直线相交于同一点;

(3)设为直线上一动点,过作双曲线的切线,切点分别为,证明:点Q在直线AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处有相同的切线,求函数的极值;

2)若,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数(其中)的部分图象如图所示,把函数的图像向右平移个单位长度,再向下平移个单位,得到函数的图像。

(1)当时,若方程恰好有两个不同的根,求的取值范围及的值;

(2)令,若对任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

同步练习册答案