精英家教网 > 高中数学 > 题目详情

,函数f(x)=x3+ax2+7ax不存在极值的充要条件是

[  ]

A.0≤a≤21

B.a=0或a=7

C.a<0或a>21

D.a=0或a=21

练习册系列答案
相关习题

科目:高中数学 来源:2004全国各省市高考模拟试题汇编(天利38套)·数学 题型:022

对任意的函数f(x),g(x),在公共定义域内,规定f(x)*g(x)=min{f(x),g(x)},若f(x)=3-x,g(x)=,则f(x)*g(x)的最大值为________.

查看答案和解析>>

科目:高中数学 来源:辽宁省沈阳二中2011-2012学年高二10月月考数学试题 题型:044

已知函数f(x)=|2x-1|+|x+2|+2x(x∈R),

(1)求函数f(x)的最小值;

(2)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:不等式|x-1|+|x-m|>1对任意x∈R恒成立.若“pq”为真,“pq”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年高三数学模拟试题分类汇编:函数 题型:044

在统计学中,我们学习过方差的概念,其计算公式为

并且知道,其中为x1、x2、…、xn的平均值.

类似地,现定义“绝对差”的概念如下:设有n个实数x1、x2、…、xn,称函数g(x)=|x-x1|+|x-x2|+…+|x-xn|为此n个实数的绝对差.

(1)设有函数g(x)=|x+1|+|x-1|+|x-2|,试问当x为何值时,函数g(x)取到最小值,并求最小值;

(2)设有函数g(x)=|x-x1|+|x-x2|+…+|x+x2|,(x∈R,x1<x2<…<xn∈R),

试问:当x为何值时,函数g(x)取到最小值,并求最小值;

(3)若对各项绝对值前的系数进行变化,试求函数f(x)=3|x+3|+2|x-1|-4|x-5|(x∈R)的最值;

(4)受(3)的启发,试对(2)作一个推广,给出“加权绝对差”的定义,并讨论该函数的最值(写出结果即可).

查看答案和解析>>

科目:高中数学 来源:江苏泰兴重点中学2011届高三第一次检测数学理综试题 题型:044

已知函数f(x)=ax2-2·x,g(x)=-(a,b∈R).

(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;

(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;

(3)对满足(Ⅱ)中的条件的整数对(a,b),试构造一个定义在D={x|x∈R且x≠2k,K∈Z}上的函数h(x):使h(x+2)=h(x),且当x∈(-2,0)时,h(x)=f(x).

查看答案和解析>>

科目:高中数学 来源:2014届江西省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数f(x)=x-ln(xa)的最小值为0,其中a>0.

(1)求a的值;

(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值.]

 

查看答案和解析>>

同步练习册答案