【题目】已知椭圆C:
过点
,左焦点
(1)求椭圆C的标准方程;
(2)过点F作于x轴不重合的直线l,l与椭圆交于A,B两点,点A在直线
上的投影N与点B的连线交x轴于D点,D点的横坐标
是否为定值?若是,请求出定值;若不是,请说明理由
科目:高中数学 来源: 题型:
【题目】为了解某地区的“微信健步走”活动情况,现用分层抽样的方法从中抽取老、中、青三个年龄段人员进行问卷调查.已知抽取的样本同时满足以下三个条件:
(i)老年人的人数多于中年人的人数;
(ii)中年人的人数多于青年人的人数;
(iii)青年人的人数的两倍多于老年人的人数.
①若青年人的人数为4,则中年人的人数的最大值为___________.
②抽取的总人数的最小值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,
是某海湾旅游区的一角,其中
,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸
和
上分别修建观光长廊
和AC,其中
是宽长廊,造价是
元/米,
是窄长廊,造价是
元/米,两段长廊的总造价为120万元,同时在线段
上靠近点
的三等分点
处建一个观光平台,并建水上直线通道
(平台大小忽略不计),水上通道的造价是
元/米.
(1) 若规划在三角形
区域内开发水上游乐项目,要求
的面积最大,那么
和
的长度分别为多少米?
(2) 在(1)的条件下,建直线通道
还需要多少钱?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右两个焦点分别为
,P是椭圆上位于第一象限内的点,
轴,垂足为Q,
,
,
的面积为
.
![]()
(1)求椭圆F的方程:
(2)若M是椭圆上的动点,求
的最大值,并求出
取得最大值时M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方体
的棱长为2,E、F、G分别为
的中点,给出下列命题:
![]()
①异面直线EF与AG所成的角的余弦值为
;
②过点E、F、G作正方体的截面,所得的截面的面积是
;
③
平面![]()
④三棱锥
的体积为1
其中正确的命题是_____________(填写所有正确的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点
满足方程
.
(1)求点M的轨迹C的方程;
(2)作曲线C关于
轴对称的曲线,记为
,在曲线C上任取一点
,过点P作曲线C的切线l,若切线l与曲线
交于A,B两点,过点A,B分别作曲线
的切线
,
,且
,
的交点为Q,试问以Q为直角的
是否存在,若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间
内的一个数来表示,该数越接近
表示满意度越高.为了解某地区居民的幸福感情况,随机对该地区的男、女居民各
人进行了调查,调查数据如表所示:
幸福感指数 |
|
|
|
|
|
男居民人数 |
|
|
|
|
|
女居民人数 |
|
|
|
|
|
(1)估算该地区居民幸福感指数的平均值;
(2)若居民幸福感指数不小于
,则认为其幸福.为了进一步了解居民的幸福满意度,调查组又在该地区随机抽取
对夫妻进行调查,用
表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求
的期望(以样本的频率作为总体的概率).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,设点
是椭圆
上一点,从原点
向圆
作两条切线分别与椭圆
交于点
,直线
的斜率分别记为
.
![]()
(1)若圆
与
轴相切于椭圆
的右焦点,求圆
的方程;
(2)若
.
①求证:
;
②求
的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个集合A,B,满足BA.若对任意的x∈A,存在ai,aj∈B(i≠j),
使得x=λ1ai+λ2aj(λ1,λ2∈{﹣1,0,1}),则称B为A的一个基集.若A={1,2,3,4,5,6,7,8,9,10},则其基集B元素个数的最小值是__
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com