精英家教网 > 高中数学 > 题目详情

已知函数f(x)的定义域为[0,1],且同时满足:①对于任意x∈[0,1],总有f(x)≥3;②f(1)=4;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-3.
(I)求f(0)的值;
(II)求函数f(x)的最大值;
(III)设数列数学公式,求证:数学公式

(Ⅰ) 解:令x1=x2=0,则有f(0)≥2f(0)-3,即f(0)≤3
又对于任意x∈[0,1],总有f(x)≥3,
∴f(0)=3 (3分)
(Ⅱ)解:任取x1,x2∈[0,1],x1<x2
f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-3
∵0≤x1<x2≤1,则0<x2-x1<1,
∴f(x2-x1)≥3
∴f(x2)≥f(x1)+3-3=f(x1),即f(x)在[0,1]上递增.
∴当x∈[0,1]时,f(x)≤f(1)=4
∴f(x)的最大值为4   (6分)
(Ⅲ)证明:当n>1时,an=Sn-Sn-1=-(an-3)-(an-1-3),

∴数列{an}是以a1=1为首项,公比为 的等比数列.
∴an=(8分)
f(1)=f[3n-1]=f[+(3n-1-1)×]≥f( )+f[(3n-1-1)×]-3≥…
即 4≥3n-1f( )-3n+3.(10分)
∴f()≤,即f(an)≤3+
∴f(a1)+f(a2)+…+f(an)≤(3+ )+(3+ )+…+(3+
=3n+=3n+<3n+=3(n+).
= log333•32n-2= (2n+1)=3(n+ ),
∴原不等式成立.(14分)
分析:(Ⅰ)直接取x1=0,x2=0利用f(x1+x2)≥f(x1)+f(x2)-3可得:f(0)≤3,再结合已知条件f(0)≥3即可求得f(0)=3;
(Ⅱ)由0≤x1<x2≤1,则0<x2-x1<1,故有f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-3>f(x1),即f(x)在[0,1]内是增函数,故函数f(x)的最大值为f(1);
(Ⅲ)先证明数列{an}是以a1=1为首项,公比为 的等比数列,进而可得f(1)=f[3n-1]=f[+(3n-1-1)×]≥f( )+f[(3n-1-1)×]-3≥…,即 4≥3n-1f( )-3n+3,即f(an)≤3+,从而可证不等式.
点评:本题主要是在新定义下对抽象函数进行考查,在做关于新定义的题目时,一定要先研究定义,在理解定义的基础上再做题.解题时要认真审题,合理运用条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的有(  )个.
①已知函数f(x)在(a,b)内可导,若f(x)在(a,b)内单调递增,则对任意的?x∈(a,b),有f′(x)>0.
②函数f(x)图象在点P处的切线存在,则函数f(x)在点P处的导数存在;反之若函数f(x)在点P处的导数存在,则函数f(x)图象在点P处的切线存在.
③因为3>2,所以3+i>2+i,其中i为虚数单位.
④定积分定义可以分为:分割、近似代替、求和、取极限四步,对求和In=
n
i=1
f(ξi)△x
中ξi的选取是任意的,且In仅于n有关.
⑤已知2i-3是方程2x2+px+q=0的一个根,则实数p,q的值分别是12,26.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知函数f(x)=x3-x,其图象记为曲线C.
(i)求函数f(x)的单调区间;
(ii)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积记为S1,S2.则
S1S2
为定值;
(Ⅱ)对于一般的三次函数g(x)=ax3+bx2+cx+d(a≠0),请给出类似于(Ⅰ)(ii)的正确命题,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案