【题目】若定义在
上的函数
满足
,且
是奇函数,现给出下列4个结论:①
是周期为4的周期函数;
②
的图象关于点
对称;
③
是偶函数;
④
的图象经过点
,其中正确结论的序号是__________(请填上所有正确的序号).
科目:高中数学 来源: 题型:
【题目】选修4﹣4:坐标系与参数方程.
极坐标系与直角坐标系xoy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为
(t为参数,0≤α<π),射线θ=φ,θ=φ+
,θ=φ﹣
与曲线C1交于(不包括极点O)三点A、B、C.
(1)求证:|OB|+|OC|=
|OA|;
(2)当φ=
时,B,C两点在曲线C2上,求m与α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行六面体ABCD-A1B1C1D1中,E,F,G分别是A1D1,D1D,D1C1的中点.
![]()
(1)求证:EG∥AC;
(2)求证:平面EFG∥平面AB1C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知首项为﹣6的等差数列{an}的前7项和为0,等比数列{bn}满足b3=a7 , |b3﹣b4|=6.
(1)求数列{bn}的通项公式;
(2)是否存在正整数k,使得数列{
}的前k项和大于
?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣1|+|3x﹣
|.
(1)求不等式f(x)<1的解集;
(2)若实数a,b,c满足a>0,b>0,c>0且a+b+c=
.求证:
+
+
≥
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥A-BCDE中,底面BCDE是等腰梯形,BC∥ DE,∠ DCB=45°,O是BC中点,AO=
,且BC=6,AD=AE=2CD=
.
![]()
(1)证明:AO⊥平面BCD;
(2)求二面角A-CD-B的平面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCD-A1B1C1D中,S是B1D1的中点,E、F、G分别是BC、CD和SC的中点.求证:
![]()
(1)直线EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com