【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是
,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第
道题也由该同学(最先答题的同学)作答的概率为
(
),其中
,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是
,如果某位同学有机会答第
道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题
(1)请预测第二轮最先开始作答的是谁?并说明理由
(2)①求第二轮答题中
,
;
②求证
为等比数列,并求
(
)的表达式.
【答案】(1)第二轮最先开始答题的是甲;详见解析(2)①
,
②证明见解析;
(
)
【解析】
(1)设甲选出的3道题答对的道数为
,则
,设甲第一轮答题的总得分为
,则
,
,设乙第一轮得分为
,求出
的分布列,得到
,比较两者大小即可得出结论;
(2)①依题意得
,
,再利用相互独立事件概率乘法公式和互斥事件概率加法公式求出
;②
,从而
,
,由此能证明
是等比数列,并求出
的表达式.
(1)设甲选出的3道题答对的道数为
,则
,
设甲第一轮答题的总得分为
,则
,
所以
;
(或法二:设甲的第一轮答题的总得分为
,则
的所有可能取值为30,15,0,-15,
且
,
,
,
,
故得分为
的分布列为:
| 30 | 15 | 0 | -15 |
|
|
|
|
|
;)
设乙的第一轮得分为
,则
的所有可能取值为30,15,0,
则
,
,
,
故
的分布列为:
| 30 | 15 | 0 |
|
|
|
|
故
,
∵
,所以第二轮最先开始答题的是甲.
(2)①依题意知
,
,
,
②依题意有
(
),
∴
,(
),
又
,
所以
是以
为首项,
为公比的等比数列,
∴
,
∴
(
).
科目:高中数学 来源: 题型:
【题目】已知椭圆
和圆
,
、
为椭圆
的左、右焦点,点
在椭圆
上,当直线
与圆
相切时,
.
(I)求
的方程;
(Ⅱ)直线
与椭圆
和圆
都相切,切点分别为
、
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)当
时,判断直线
与曲线
的位置关系;
(2)若直线
与曲线
相交所得的弦长为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱
中,底面
是正方形,平面
平面
,
,
.过顶点
,
的平面与棱
,
分别交于
,
两点.
![]()
(Ⅰ)求证:
;
(Ⅱ)求证:四边形
是平行四边形;
(Ⅲ)若
,试判断二面角
的大小能否为
?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
已知曲线
的参数方程为
(
为参数),以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的直角坐标方程及曲线
上的动点
到坐标原点
的距离
的最大值;
(Ⅱ)若曲线
与曲线
相交于
,
两点,且与
轴相交于点
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com