【题目】已知抛物线
:
的焦点为
,过点
的直线
交抛物线
于
(
位于第一象限)两点.
(1)若直线
的斜率为
,过点
分别作直线
的垂线,垂足分别为
,求四边形
的面积;
(2)若
,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长.该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表:
年份 |
|
|
|
|
|
储蓄存款 (千亿元) |
|
|
|
|
|
为便于计算,工作人员将上表的数据进行了处理(令
,
),得到下表:
时间 |
|
|
|
|
|
储蓄存款 |
|
|
|
|
|
(Ⅰ)求
关于
的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出
关于
的回归方程;
(Ⅲ)用所求回归方程预测到
年年底,该地储蓄存款额可达多少?
附:线性回归方程
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有
六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中
,各踢了
场,
各踢了
场,
踢了
场,且
队与
队未踢过,
队与
队也未踢过,则在第一周的比赛中,
队踢的比赛的场数是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在
范围内(单位:毫米,以下同),按规定直径在
内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:
![]()
(1)根据以上统计数据完成下面
列联表,并回答是否有
以上的把握认为“桔柚直径与所在基地有关”?
![]()
(2)求优质品率较高的基地的500个桔柚直径的样本平均数
(同一组数据用该区间的中点值作代表);
(3)记甲基地直径在
范围内的五个桔柚分别为
,现从中任取二个,求含桔柚
的概率.
附:
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,已知直线
:
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设点
的极坐标为
,直线
与曲线
的交点为
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,且点
到椭圆
上任意一点的最大距离为3,椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与以线段
为直径的圆相交于
、
两点,与椭圆相交于
、
,且
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为抛物线
的焦点,点
为其上一点,
与
关于
轴对称,直线
与抛物线交于异于
的
两点,
,
.
(1)求抛物线的标准方程和
点的坐标;
(2)判断是否存在这样的直线
,使得
的面积最小.若存在,求出直线
的方程和
面积的最小值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com