精英家教网 > 高中数学 > 题目详情
(2012•日照一模)甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.
(Ⅰ)求选出的4名选手均为男选手的概率.
(Ⅱ)记X为选出的4名选手中女选手的人数,求X的分布列和期望.
分析:(I)根据题意可得:选出的4名选手均为男选手即甲乙两班各选2名男选手,共有C32中选法,进而得到答案.
(II)X的可能取值为0,1,2,3,再利用等可能事件的概率分别计算出其发生的概率,进而得到X的分布列与期望.
解答:解:(Ⅰ)事件A表示“选出的4名选手均为男选手”.
由题意知P(A)=
C
2
3
C
2
5
C
2
4
…(3分)
=
1
10
×
1
2
=
1
20
.…(5分)
(Ⅱ)X的可能取值为0,1,2,3.…(6分)
P(X=0)=
C
2
3
C
2
5
C
2
4
=
3
10×6
=
1
20
,…(7分)
P(X=1)=
C
1
2
C
1
3
C
2
3
+
C
1
3
C
2
5
C
2
4
=
2×3×3+3
10×6
=
7
20
,…(9分)
P(X=3)=
C
2
3
C
1
3
C
2
5
C
2
4
=
3×3
10×6
=
3
20
,…(10分)
P(X=2)=1-P(X=0)-P(X=1)-P(X=3)=
9
20
.…(11分)
所以X的分布列:
X 0 1 2 3
P
1
20
7
20
9
20
3
20
…(12分)
所以E(X)=0×
1
20
+1×
7
20
+2×
9
20
+3×
3
20
=
17
10
.…(13分)
点评:本题主要考查离散型随机变量的分布列与期望,以及等可能事件的概率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•日照一模)在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(1)求证:BD⊥EG;
(2)求平面DEG与平面DEF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)给出下列四个命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,则函数f(x)=x2+ax-3只有一个零点;
③函数y=sin(2x-
π
3
)
的一个单调增区间是[-
π
12
12
]

④对于任意实数x,有f(-x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.
其中真命题的序号是
①③④
①③④
(把所有真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)已知定义在R上奇函数f(x)满足①对任意x,都有f(x+3)=f(x)成立;②当x∈[0,
3
2
]
f(x)=
3
2
-|
3
2
-2x|
,则f(x)=
1
|x|
在[-4,4]上根的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)已知f(x)=
m
n
,其中
.
m
=(sinωx+cosωx,
3
cosωx)
.
n
=(cosωx-sinωx,2sinωx)
(ω>0).若f(x)图象中相邻的两条对称轴间的距离不小于π.
(I)求ω的取值范围;
(II)在△ABC中,a,b,c分别为角A,B,C的对边,a=
7
,S△ABC=
3
2
,当ω取最大值时,f(A)=1,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)给出下列四个命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,则函数f(x)=x2+ax-3只有一个零点;
③函数y=2
2
sinxcosx
[-
π
4
π
4
]
上是单调递减函数;
④若lga+lgb=lg(a+b),则a+b的最小值为4.
其中真命题的序号是
①④
①④
(把所有真命题的序号都填上).

查看答案和解析>>

同步练习册答案