精英家教网 > 高中数学 > 题目详情
过点(1,0)的直线与中心在原点,焦点在x轴上且率心率为
2
2
的椭圆C相交于A、B两点,直线y=
1
2
x过线段AB中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程.
分析:本题是典型的求圆锥曲线方程的问题,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式,再利用对称点所连线段被对称轴垂直平分来列式求解.
解答:解:由e=
c
a
=
2
2
,得
a2-b2
a2
=
1
2
,从而a2=2b2,c=b
设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上
则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12-x22)+2(y12-y22)=0,
y1-y2
x1-x2
=-
x1+x2
2(y1+y2)

设AB中点为(x0,y0),则kAB=-
x0
2yo

又(x0,y0)在直线y=
1
2
x上,y0=
1
2
x0
于是-
x0
2yo
=-1,kAB=-1,则l的方程为y=-x+1.
右焦点(b,0)关于l的对称点设为(x′,y′),则
y‘
x’-b
=1
y′
2
=-
x′+b
2
+1
解得
x′=1
y′=1-b

由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=
9
16
,a2=
9
8

∴所求椭圆C的方程为
8x2
9
+
16y2
9
=1

l的方程为y=-x+1.
点评:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强 待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题,成为解决本题的关键.注意在设直线方程时要对直线斜率是否存在进行讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标平面上的矩形OABC中,|OA|=2,| OC |=
3
,点P,Q满足
OP
=
λOA
AQ
=( 1-λ )
AB
  ( λ∈R )
,点D是C关于原点的对称点,直线DP与CQ相交于点M.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)若过点(1,0)的直线与点M的轨迹相交于E,F两点,求△AEF的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,r>0).过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,且满足|AC|=|BD|的直线l只有三条的必要条件是(  )
A、r∈(0,1]
B、r∈(1,2]
C、r∈(
3
2
,4)
D、r∈[
3
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两个焦点F1(-
3
,0),F2(
3
,0)
,且椭圆短轴的两个端点与F2构成正三角形.
(I)求椭圆的方程;
(Ⅱ)若过点(1,0)的直线l与椭圆交于不同两点P、Q,试问在x轴上是否存在定点E(m,0),使
PE
QE
恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的函数f(x)=
(4k-1)ln
1
x
,x∈(0 , e]
kx2-kx,x∈(e , +∞)
是增函数
(1)求常数k的取值范围
(2)过点(1,0)的直线与f(x)(x∈(e,+∞))的图象有交点,求该直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•泰安一模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点与抛物线y2=4
3
x
的焦点F重合,且椭圆短轴的两个端点与F构成正三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(1,0)的直线l与椭圆交于不同两点P、Q,试问在x轴上是否存在定点E(m,0),使
PE
QE
恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案