已知圆O:x2+y2=r2及圆外一点P(a,b),过点P作圆O的两条切线PA,PB,切点分别为A,B,求直线AB的方程.
|
分析:过圆外一点P作圆的切线PA,PB,有PA=PB.由此,以点P为圆心,PA为半径构造辅助圆,则弦AB可以看作已知圆与辅助圆的公共弦. 解:由切线长定理得PA=PB,以P为圆心,PA为半径构造圆P,则AB可看作圆O与圆P的公共弦.如图,由切线的性质得|PA|2=|PO|2-|OA|2=a2+b2-r2, 所以圆P的方程为(x-a)2+(y-b)2=a2+b2-r2. ① 又圆O的方程为x2+y2=r2, ② ①-②,得ax+by-r2=0. 所以直线AB的方程为ax+by-r2=0.
点评:本题若按常规思路,需先求得切线方程,再设法求得切点坐标,才能求出直线AB的方程.显然构造辅助圆,将问题转化为求两圆的公共弦方程更巧妙. |
科目:高中数学 来源:辽宁省沈阳二中2011-2012学年高二上学期期中考试数学文科试题 题型:013
已知圆O:x2+y2=1,点P在直线
上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是
[-2,2]
[0,2]
[-1,1]
[0,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
已知圆O:x2+y2=1,圆C:(x-4)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;
(Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;
(Ⅱ)求切线长|PA|的最小值;
(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.
![]()
(1)求a、b间关系;
(2)求|PQ|的最小值;
(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.
![]()
(1)求a、b间关系;
(2)求|PQ|的最小值;
(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知圆O:x2+y2=1,圆C:(x-2)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|.
(1)求实数a、b间满足的
等量关系;
(2)求切线长|PA|的最小值;
(3)是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?若存在,求出圆P的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com