精英家教网 > 高中数学 > 题目详情

已知数列{an},{bn}中,a1=b1=1,且当n≥2时,an-nan-1=0,数学公式.记n的阶乘n(n-1)(n-2)…3•2•1≈n!
(1)求数列{an}的通项公式;
(2)求证:数列数学公式为等差数列;
(3)若数学公式,求{cn}的前n项和.

(1)解:∵an-nan-1=0(n≥2),a1=1,
∴an=nan-1=n(n-1)an-2=n(n-1)(n-2)an-3=…
=n(n-1)(n-2)…3•2•1=n!
又a1=1=1!,∴an=n!
(2)证明:由,两边同时除以2n得:
,即
∴数列{}是以为首项,公差为的等差数列,
,故
(3)解:因为

记An=
=
=
记{}的前n项和为Bn


由②-①得:
=
∴Sn=c1+c2+c3+…+cn=
所以数列{cn}的前n项和为
分析:(1)把递推式an-nan-1=0变形后进行循环,可以得到an=n(n-1)(n-2)…3•2•1=n!,验证a1成立,则数列{an}的通项公式可求;
(2)把给出的递推式两边同时除以2n,移向整理即可证得数列为等差数列;
(3)把数列{an}的通项代入,把数列{bn}的通项代入,利用裂项相消和错位相减法分别求出数列{}和{}的和后直接作和即可.
点评:本题考查了等差关系的确定,考查了等差数列和等比数列通项公式的求法,考查了利用裂项相消和错位相减法求数列的前n项和,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案