精英家教网 > 高中数学 > 题目详情
已知各项都为正数的等比数列,{an}的公比q≠1,且a4,a6,a7成等差数列,则
a4+a6
a5+a7
的值等于:(  )
A、
5
-1
2
B、
5
+1
2
C、
1
2
D、2
分析:先用a4表示出a6、a7,然后根据a4,a6,a7成等差数列可得a4+a7=2a6,将a6、a7用a4的关系式代入,可求出q的值,根据
a4+a6
a5+a7
=
1
q
可得到答案.
解答:解:设a4=m,公比为q,所以a6=mq2,a7=mq3
a4+a7=2a6
m+mq3=2mq2
1+q3=2q2
(q-1)(q2-q-1)=0∵q≠1
∴q2-q-1=0∴q=
1+
5
2
1-
5
2
(舍)
a4+a6
a5+a7
=
1
q
=
2
1+
5
=
5
-1
2

故选A.
点评:本题主要考查等比数列的基本性质.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•重庆一模)设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,2
Sn
是an+2 和an的等比中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m 的一切正整数n,不等式2Sn-4200>
an2
2
恒成立,求这样的正整数m共有多少个?

查看答案和解析>>

科目:高中数学 来源:2011届重庆市七区高三第一次调研测试数学理卷 题型:解答题

(本小题满分12分)
设数列的各项都为正数,其前项和为,已知对任意的等比中项.
(Ⅰ)证明数列为等差数列,并求数列的通项公式;
(Ⅱ)证明
(Ⅲ)设集合,且,若存在,使对满足的一切正整数,不等式恒成立,求这样的正整数共有多少个?

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市七区高三第一次调研测试数学理卷 题型:解答题

(本小题满分12分)

设数列的各项都为正数,其前项和为,已知对任意的等比中项.

(Ⅰ)证明数列为等差数列,并求数列的通项公式;

(Ⅱ)证明

(Ⅲ)设集合,且,若存在,使对满足 的一切正整数,不等式恒成立,求这样的正整数共有多少个?

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列的各项都为正数,其前项和为,已知对任意的等比中项.

(Ⅰ)证明数列为等差数列,并求数列的通项公式;

(Ⅱ)证明;<1

查看答案和解析>>

科目:高中数学 来源:2011年重庆市七区高考数学一模试卷(理科)(解析版) 题型:解答题

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,2是an+2 和an的等比中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明++…+<1;
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m 的一切正整数n,不等式2Sn-4200>恒成立,求这样的正整数m共有多少个?

查看答案和解析>>

同步练习册答案