在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.![]()
(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
科目:高中数学 来源: 题型:解答题
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =
,AB=BC=2AD=4,
E、F分别是AB、CD上的点,且EF∥BC.设AE =
,G是BC的中点.
沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).![]()
(1)当
=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为
,求
的最大值;
(3)当
取得最大值时,求二面角D-BF-E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知三棱柱
的侧棱与底面垂直,
,
,
,
分别是
,
的中点,点
在直线
上,且
;
(Ⅰ)证明:无论
取何值,总有
;
(Ⅱ)当
取何值时,直线
与平面
所成的角
最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点
,使得平面
与平面
所成的二面角为30º,若存在,试确定点
的位置,若不存在,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分10分)
如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1)求异面直线AF与BG所成的角的大小;
(2)求平面APB与平面CPD所成的锐二面角的余弦值![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com