【题目】在极坐标系中,点P的坐标是(1,0),曲线C的方程为ρ=2
.以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为﹣1的直线l经过点P.
(1)写出直线l的参数方程和曲线C的直角坐标方程;
(2)若直线l和曲线C相交于两点A,B,求|PA|2+|PB|2的值.
科目:高中数学 来源: 题型:
【题目】△ABC中,角A,B,C所对边分别是a、b、c,且cosA=
.
(1)求sin2
+cos2A的值;
(2)若a=
,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函数f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知c=
,f(C)=0,sinB=2sinA,求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产某种产品的产量x(吨)与相应的生产成本y(万元)有如下几组样本数据:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3.1 | 3.9 | 4.5 |
据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得到其回归直线的斜率为0.8,则当该产品的生产成本是6.7万元时,其相应的产量约是( )
A.8
B.8.5
C.9
D.9.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项都是正数,它的前n项和为Sn , 满足2Sn=an2+an , 记bn=(﹣1)n
.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前2016项的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集为[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均为正实数,且满足a+b+c=m,求证:
≥3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数y=4sinxcosx,x∈R的图象,只要把函数y=sin2x﹣
cos2x,x∈R图象上所有的点( )
A.向左平移
个单位长度
B.向右平移
个单位长度
C.向左平移
个单位长度
D.向右平移
个单位长度
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com