如图,斜率为1的直线过抛物线
的焦点F,与抛物线交于两点A,B,![]()
(1)若|AB|=8,求抛物线
的方程;
(2)设C为抛物线弧AB上的动点(不包括A,B两点),求
的面积S的最大值;
(3)设P是抛物线
上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)
科目:高中数学 来源: 题型:解答题
已知椭圆
方程为
,左、右焦点分别是
,若椭圆
上的点
到
的距离和等于
.
(Ⅰ)写出椭圆
的方程和焦点坐标;
(Ⅱ)设点
是椭圆
的动点,求线段
中点
的轨迹方程;
(Ⅲ)直线
过定点
,且与椭圆
交于不同的两点
,若
为锐角(
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知中心在原点O,焦点在x轴上的椭圆E过点(1,
),离心率为
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线x+y+1=0与椭圆E相交于A、B(B在A上方)两点,问是否存在直线l,使l与椭圆相交于C、D(C在D上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设直线
与直线
交于
点.
(1)当直线
过
点,且与直线
垂直时,求直线
的方程;
(2)当直线
过
点,且坐标原点
到直线
的距离为
时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题12分)
已知椭圆
的右焦点为F,上顶点为A,P为C
上任一点,MN是圆
的一条直径,若与AF平行且在y轴上的截距为
的直线
恰好与圆
相切.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)若
的最大值为49,求椭圆C
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是
,并经过点
,求此双曲线的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
( 本小题满分12分)如图所示,已知圆
为圆上一动点,点
在
上,点
在
上,且满足
的轨迹为曲线
。![]()
求曲线
的方程;
若过定点F(0,2)的直线交曲线
于不同的两点
(点
在点
之间),且满足
,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆中心在原点,焦点在
轴上,椭圆短轴的端点和焦点组成的四边形为正方形,且
.
(1)求椭圆方程;
(2)直线
过点
,且与椭圆相交于
、
不同的两点,当
面积取得最大值时,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com