精英家教网 > 高中数学 > 题目详情
若函数y=a-x的反函数的图象经过点(
12
,1),则a=
2
2
分析:根据互为反函数的两个函数图象关于直线y=x对称,可得函数y=a-x的图象经过点(1,
1
2
),代入构造关于a的方程,解方程可得a值.
解答:解:若函数y=a-x的反函数的图象经过点(
1
2
,1),
则函数y=a-x的图象经过点(1,
1
2
),
即a-1=
1
2

解得a=2
故答案为:2
点评:本题考查的知识点是反函数,指数函数解析式的求法,其中根据已知结合互为反函数的两个函数图象关于直线y=x对称,得到函数y=a-x的图象经过点(1,
1
2
),是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数数学公式确定数列{an}的反数列为{bn},求bn
(2)设cn=3n,数列{cn}与其反数列{dn}的公共项组成的数列为{tn}
(公共项tk=cp=dq,k、p、q为正整数).求数列{tn}前10项和S10
(3)对(1)中{bn},不等式数学公式对任意的正整数n恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数数学公式确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式数学公式对任意的正整数n恒成立,求实数a的取值范围;
(3)设数学公式,若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源:0117 模拟题 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”。
(1)若函数f(x)=2确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式对任意的正整数n恒成立,求实数a的取值范围;
(3)设(λ为正整数),若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn}, 求数列{tn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.

(1)已知函数f(x)=2的反函数为f-1(x)=(x≥0),则由函数f(x)=2确定的数列{an}的反数列为{bn},求{bn}的通项公式;不等式++…+≥1-2a对任意的正整数n恒成立,求实数a的范围;

(2)设函数y=3x确定的数列为{cn},{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省黄冈市高三数学交流试卷6(理科)(解析版) 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式对任意的正整数n恒成立,求实数a的取值范围;
(3)设,若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn

查看答案和解析>>

同步练习册答案