【题目】已知函数
(1)讨论函数f(x)的极值点的个数;
(2)若f(x)有两个极值点x1、x2,证明:f(x1)+f(x2)>3-4ln2.
【答案】(Ⅰ)(ⅰ)
时,
仅有一个极值点;(ⅱ) 当
时,
无极值点;
(ⅲ)当
时,
有两个极值点.(Ⅱ)详见解析
【解析】试题(Ⅰ)先求导数,再确定导函数零点情况,这需分类讨论:一次与二次的讨论,二次中有根与无根的讨论,两根情况分相等、一正一负、两不等正根,最后根据对应情况确定导函数符号变化规律,确定对应极值点个数;(Ⅱ)由(Ⅰ)先确定
有两个极值点时,
的取值范围,以及
满足条件,再化简
为
的函数,最后根据导数确定对应函数单调性,根据单调性证明不等式.
试题解析:解:(Ⅰ)由
得,
(ⅰ)
时,
,![]()
所以
取得极小值,
是
的一个极小值点.
(ⅱ)
时,
,令
,得![]()
显然,
,所以
,
在
取得极小值,
有一个极小值点.
(ⅲ)
时,
时,即
在
是减函数,
无极值点.
当
时,
,令
,得![]()
当
和
时
,
时,
,所以
在
取得极小值,在
取得极大值,所以
有两个极值点.
综上可知:(ⅰ)
时,
仅有一个极值点;
(ⅱ) 当
时,
无极值点;
(ⅲ)当
时,
有两个极值点.
(Ⅱ)由(Ⅰ)知,当且仅当
时,
有极小值点
和极大值点
,且
是方程
的两根,所以
,
![]()
![]()
,
设
,
,
所以
时,
是减函数,
,则![]()
所以
得证.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)求
的单调区间;
(Ⅱ)求
在区间
上的最小值.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】(Ⅰ)
.
令
,得
.
![]()
与
的情况如上:
所以,
的单调递减区间是
,单调递增区间是
.
(Ⅱ)当
,即
时,函数
在
上单调递增,
所以
在区间
上的最小值为
.
当
,即
时,
由(Ⅰ)知
在
上单调递减,在
上单调递增,
所以
在区间
上的最小值为
.
当
,即
时,函数
在
上单调递减,
所以
在区间
上的最小值为
.
综上,当
时,
的最小值为
;
当
时,
的最小值为
;
当
时,
的最小值为
.
【题型】解答题
【结束】
19
【题目】已知抛物线
的顶点在原点,焦点在坐标轴上,点
为抛物线
上一点.
(1)求
的方程;
(2)若点
在
上,过
作
的两弦
与
,若
,求证: 直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为奇函数,
为偶函数,且
.
(1)求
及
的解析式及定义域;
(2)若关于
的不等式
恒成立,求实数
的取值范围.
(3)如果函数
,若函数
有两个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度)以[160,180)[180,200)[200,220)[220,240)[240,260)[260,280)[280,300)分组的频率分布直方图如图所示:
![]()
(1)求直方图中
的值;
(2)用分层抽样的方法从[260,280)和[280,300)这两组用户中确定6人做随访,再从这6人中随机抽取2人做问卷调查,则这2人来自不同组的概率是多少?
(3)求月平均用电量的众数和中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按文献记载,《百家姓》成文于北宋初年,表1记录了《百家姓》开头的24大姓氏:
表1:
赵 | 钱 | 孙 | 李 | 周 | 吴 | 郑 | 王 | 冯 | 陈 | 褚 | 卫 |
蒋 | 沈 | 韩 | 杨 | 朱 | 秦 | 尤 | 许 | 何 | 吕 | 施 | 张 |
表2记录了2018年中国人口最多的前10大姓氏:
表2:
1:李 | 2:王 | 3:张 | 4:刘 | 5:陈 |
6:杨 | 7:赵 | 8:黄 | 9:周 | 10:吴 |
从《百家姓》开头的24大姓氏中随机选取1个姓氏,则这个姓氏是2018年中国人口最多的前10大姓氏的概率为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,曲线
C的极坐标方程为
.
(1)求曲线
的普通方程和
的直角坐标方程;
(2)设
分别交
于点
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,离心率为
,过
的直线
与椭圆
交于
两点,且
的周长为![]()
(1)求椭圆
的方程;
(2)若直线
与椭圆
分别交于
两点,且
,试问点
到直线
的距离是否为定值,证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com