(16)已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点
(1,0),(2,0),如图所示,求:
![]()
(Ⅰ)x0的值;
(Ⅱ)a,b,c的值.
解法一:
(Ⅰ)由图象可知,在(-∞,1)上f′(x)>0,在(1,2)上f′(x)<0,在(2,+∞)上
f′(x)>0,
故f(x)在(-∞,1),(2,+∞)上递增,在(1,2)上递减,
因此f(x)在x=1处取得极大值,所以x0=1.
(Ⅱ)f′(x)=3ax2+2bx+c,
由f′(1)=0,f′(2)=0,f(1)=5,
得![]()
解得a=2,b= -9,c=12.
解法二:
(Ⅰ)同解法一.
(Ⅱ)设f′(x)=m(x-1)(x-2)=mx2-3mx+
又f′(x)=3ax2+2bx+c,
所以a=![]()
f(x)=![]()
由f(1)=5,
即![]()
得m=6,
所以a=2,b= -9,c=12.
科目:高中数学 来源:2011届南京市金陵中学高三第四次模拟考试数学试题 题型:解答题
(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三下学期开学质量检测数学试卷 题型:解答题
(本小题满分16分)已知函数f(x)=
是定义在R上的奇函数,其值域为
.
(1) 试求a、b的值;
(2) 函数y=g(x)(x∈R)满足:
条件1: 当x∈[0,3)时,g(x)=f(x);条件2: g(x+3)=g(x)lnm(m≠1).
① 求函数g(x)在x∈[3,9)上的解析式;
② 若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com