【题目】已知命题p:函数
在(﹣∞,+∞)上有极值,命题q:双曲线
的离心率e∈(1,2).若p∨q是真命题,p∧q是假命题,求实数a的取值范围.
【答案】解:命题p:f′(x)=3x2+2ax+a+
,
∵函数f(x)在(﹣∞,+∞)上有极值,
∴f′(x)=0有两个不等实数根,
∴△=4a2﹣4×3(a+
)=4a2﹣4(3a+4)>0,
解得a>4或a<﹣1;
命题q:双曲线
的离心率e∈(1,2),为真命题,
则
∈(1,2),解得0<a<15.
∵命题“p∧q”为假命题,“p∨q”为真命题,
∴p与q必然一真一假,
则
或
,
解得:a≥15或0<a≤4或a<﹣1
【解析】分别求出p,q为真时的a的范围,由于命题“p∧q”为假命题,“p∨q”为真命题,可得p与q必然一真一假.即可得出.
【考点精析】通过灵活运用复合命题的真假,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真即可以解答此题.
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=
,M是CC1的中点,则异面直线AB1与A1M所成角为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC﹣A1B1C1中,AB=AC=1,∠BAC=90°,且异面直线A1B与B1C1所成的角等于60°,设AA1=a. ![]()
(1)求a的值;
(2)求平面A1BC1与平面B1BC1所成的锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,实数
为常数).
(1)若
,且函数
在
上的最小值为0,求
的值;
(2)若对于任意的实数
,函数
在区间
上总是减函数,对每个给定的
,求
的最大值
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
为圆
上一动点,
轴于点
,若动点
满足
(其中
为非零常数)
(1)求动点
的轨迹方程;
(2)当
时,得到动点
的轨迹为曲线
,斜率为
1的直线
与曲线
相交于
,
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是边长为1的菱形,
底面ABCD,SA=2,M为SA的中点. ![]()
(1)求异面直线AB与MD所成角的大小;
(2)求直线AS与平面SCD所成角的正弦值;
(3)求平面SAB与平面SCD所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cosx+ax2﹣1,a∈R.
(1)当a=0时,求函数f(x)在
处的切线方程;
(2)当a=1时,求函数f(x)在[﹣π,π]上的最大值和最小值;
(3)若对于任意的实数x恒有f(x)≥0,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a、b表示两条直线,α、β表示两个平面,则下列命题正确的是 . (填写所有正确命题的序号) ①若a∥b,a∥α,则b∥α;②若a∥b,aα,b⊥β,则α⊥β;
③若α∥β,a⊥α,则a⊥β;④若α⊥β,a⊥b,a⊥α,则b⊥β.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达
亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为
.
![]()
(Ⅰ)确定
,
,
,
的值;
(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
网龄3年以上 | 网龄不足3年 | 合计 | |
购物金额在2000元以上 | 35 | ||
购物金额在2000元以下 | 20 | ||
合计 | 100 |
②并据此列联表判断,是否有
%的把握认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(参考公式:
,其中
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com