【题目】已知椭圆
的离心率为
,点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为原点,过原点的直线(不与
轴垂直)与椭圆
交于
、
两点,直线
、
与
轴分别交于点
、
.问:
轴上是否存在定点
,使得
?若存在,求点
的坐标;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】为了治理空气污染,某市设
个监测站用于监测空气质量指数
,其中在轻度污染区、中度污染区、重度污染区分别设有
、
、
个监测站,并以
个监测站测得的
的平均值为依据播报该市的空气质量.
(1)若某日播报的
为
,已知轻度污染区
平均值为
,中度污染区
平均值为
,求重试污染区
平均值;
(2)如图是
年
月份
天的
的频率分布直方图,
月份仅有
天
在
内.
![]()
①某校参照官方公布的
,如果周日
小于
就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;
②环卫部门从
月份
不小于
的数据中抽取两天的数据进行研究,求抽取的这两天中
值都在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的短轴长为2,离心率
.过椭圆的右焦点作直线l(不与
轴重合)与椭圆
交于不同的两点
,
.
(1)求椭圆
的方程;
(2)试问在
轴上是否存在定点
,使得直线
与直线
恰好关于
轴对称?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴非负半轴为极轴建立极坐标系,点
为曲线
上的动点,点
在线段
的延长线上且满足
点
的轨迹为
.
(1)求曲线
的极坐标方程;
(2)设点
的极坐标为
,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,平面
平面
,
∥
,
,
,
,
.
![]()
(1)求多面体
的体积;
(2)已知
是棱
的中点,在棱
是否存在点
使得
∥
,若存在,请确定点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:
![]()
等级 | 不合格 | 合格 | ||
得分 |
|
|
|
|
频数 | 6 | a | 24 | b |
(1)由该题中频率分布直方图求测试成绩的平均数和中位数;
(2)其他条件不变在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;
(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为
,求
的数学期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com