精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD.

(Ⅰ)求异面直接PD与BC所成角的余弦值;

(Ⅱ)求二面角P-AB-C的大小;

(Ⅲ)设点M在棱PC上,且为何值时,PC⊥平面BMD.

解法一:

由平面几何知识得:

(Ⅰ)过交于,连结,则或其补角为异面直线所成的角,

∵四边形是等腰梯形,

四边形是平行四边形。

 

 的中点,且

 

为直角三角形,

中,由余弦定理得

故异面直线PD与所成的角的余弦值为

(Ⅱ)连结,由(Ⅰ)及三垂线定理知,为二面角的平面角

  

   

  ∴二面角的大小为

(Ⅲ)连结

又在中,

时,

解法二:

 

 

 又

由平面几何知识得:

为原点,分别为轴建立如图所示的空间直角坐标系,则各点坐标为

(Ⅰ)

      

      

  

故直线所成的角的余弦值为

(Ⅱ)设平面的一个法向量为

由于

   得  

,又已知平面ABCD的一个法向量

又二面角为锐角,

所求二面角的大小为

(Ⅲ)设,由于三点共线,

∴(-1,0,-=0

由(1)(2)知:

 

时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案