精英家教网 > 高中数学 > 题目详情
函数f(x)=x-a
x
在x∈[1,4]上单调递减,则实数a的最小值为(  )
分析:根据题意,函数f(x)的导数在区间[1,4]上恒小于或等于0.因此求出导数f'(x),列出相应不等式,解之即可得到实数a的最小值.
解答:解:求得函数的导数f'(x)=1-
a
2
x

∵函数f(x)=x-a
x
在x∈[1,4]上单调递减,
∴f'(x)≤0即1-
a
2
x
≤0,对任意的x∈[1,4]成立
∴a≥2
x
对任意的x∈[1,4]成立,得a≥4
因此a的最小值是4
故选C
点评:本题给出函数在指定区间上单调递减,求参数a的最小值,着重考查了函数求导数的法则和导数与单调性的关系等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

分段函数f(x)=
x,x>0
-x,x≤0
可以表示为f(x)=|x|,同样分段函数f(x)=
x ,x≤3
3 ,x>3
可以表示为f(x)=
1
2
(x+3-|x-3|),仿此,分段函数f(x)=
3 ,x<3
x ,x≥3
可以表示为f(x)=
1
2
(x+3-|x-3|)
1
2
(x+3-|x-3|)
,分段函数f(x)=
a ,x≤a
x ,a<x<b
b ,x≥b
可以表示为f(x)=
1
2
(a+b+|x-a|-|x-b|)
1
2
(a+b+|x-a|-|x-b|)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案