精英家教网 > 高中数学 > 题目详情

. 设l为平面上过点(0,l)的直线,l的斜率等可能地取、0、,用ξ表示坐标原点到直线l的距离,则随机变量ξ的数学期望Eξ=_________.

 

【答案】

【解析】   ∵直线l的方程分别为:y =x +1、y =x +1、y =x +1、y = 1、y =x+1、y =x+1、y =x+1,∴原点到它们的距离分别为、1、所以随机变量ξ的分布列为:

 

ξ

1

P

 

所以Eξ=×+×+×+×1=

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设l为平面上过点(0,l)的直线,l的斜率等可能地取-2
2
-
3
-
5
2
、0、2
2
3
5
2
用ξ表示坐标原点到直线l的距离,则随机变量ξ的数学期望Eξ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设l为平面上过点(0,1)的直线,l的斜率等可能地取-2
2
,-
3
,-
5
2
,0,
5
2
3
,2
2
,用X表示坐标原点到l的距离,则随机变量ξ的数学期望EX=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设l为平面上过点(0,1)的直线,l的斜率等可能的取-2
2
,-
3
,-
5
2
,0,
5
2
3
,2
2
.用ξ表示坐标原点到l的距离,求随机变量ξ的数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设l为平面上过点(0,1)的直线,l的斜率等可能地取1,
7
,-1,-
31
,用ξ表示坐标原点到l的距离,则随机变ξ的数学期望Eξ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设l为平面上过点(0,1)的直线,l的斜率等可能地取-,-,-,0,,,2.用X表示坐标原点到l的距离,则随机变量X的数学期望EX=________________________.

查看答案和解析>>

同步练习册答案