精英家教网 > 高中物理 > 题目详情
14.如图所示,某棱镜的横截面为直角三角形ABC,其折射率为$\sqrt{3}$,已知∠A=30°、∠C=90°,一束平行于AC的光射向棱镜的左侧界面,经AC面反射后从BC边射出,求:
①判断光线在AC面是否发生了全反射;
②光线从BC射出,射出时的折射角是多少.

分析 画出光路图,根据折射定律求光线进入AB面时的折射角,结合几何关系求出折射光线射到AC面的入射角和射到BC面的入射角,通过全反射的条件判断光线在AC面上是否发生全反射,由折射定律求光线从BC射出时的折射角.

解答 解:①根据题意,画出光路图如图所示.
由几何关系有:α=60°
根据折射定律有:n=$\frac{sinα}{sinβ}$,
解得:β=30°
由几何关系可得:θ=60°,i=30°,
光线发生全反射的临界角的正弦为:sinC=$\frac{1}{n}=\frac{\sqrt{3}}{3}$,
因为sin$θ=\frac{\sqrt{3}}{2}>sinC$,
可知光线在AC面能发生全反射.
②在BC面上,由折射定律有:n=$\frac{sinr}{sini}$,i=30°,
解得:r=60°.
答:①光线在AC面能发生全反射.
②光线从BC射出,射出时的折射角是60°.

点评 本题是折射定律的基本运用,关键作出光路图,运用折射定律和全反射条件、几何关系结合进行研究.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

19.下列说法正确的是(  )
A.若使放射性物质的温度升高,其半衰期变大
B.核反应方程${\;}_{90}^{234}Th$→${\;}_{91}^{234}Pa$+X中的X表示质子
C.β衰变所释放的电子是原子核外的电子电离形成的
D.由波尔理论知道氢原子从激发态跃迁到基态时会放出光子

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

5.如图所示,水平面上固定着两根相距L且电阻不计的足够长的光滑金属导轨,导轨处于方向竖直向下、磁感应强度为B的匀强磁场中,铜棒a、b的长度均等于两导轨的间距、电阻均为R、质量均为m,铜棒平行地静止在导轨上且与导轨接触良好.现给铜棒a一个平行导轨向右的瞬时冲量I,关于此后的过程,下列说法正确的是(  )
A.回路中的最大电流为$\frac{BLI}{mR}$B.铜棒b的最大加速度为$\frac{{B}^{2}{L}^{2}I}{2{m}^{2}R}$
C.铜棒b获得的最大速度为$\frac{I}{m}$D.回路中产生的总焦耳热为$\frac{{I}^{2}}{2m}$

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

2.某同学利用如图甲所示装置来验证机械能守恒定律,器材为:铁架台,约50cm的不可伸长的细线,带孔的小铁球,光电门和计时器(可以记录挡光的时间),量角器,刻度尺,游标卡尺.
实验前先查阅资料得到当地的重力加速度g,再将细线穿过小铁球,悬挂在铁架台的横杆上,在小铁球运动轨迹的最低点安装好光电门.将小铁球拉离竖直方向一定夹角后从静止释放,小铁球通过光电门的时间是t.依次测量摆线的长度l、摆线与竖直方向的夹角θ及小铁球的直径d.
(1)用20分度游标卡尺测量小铁球直径d,刻度线如图乙所示,则d=1.025cm.
(2)某次实验测得小铁球通过光电门时记录的时间t=5.125×10-3s,由此得小铁球通过光电门的速度为2.0m/s(保留2位有效数字).
(3)若$g(l+\frac{d}{2})(1-cosθ)=\frac{{d}^{2}}{2{t}^{2}}$等式在误差范围内成立,则验证了机械能守恒.(用题中物理量符号表示)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

9.在电磁波谱中,波长最长的是(  )
A.X射线B.紫外线C.红外线D.无线电波

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

19.近来,我国多个城市开始重点治理“中国式过马路”行为.每年全国由于行人不遵守交通规则而引发的交通事故上万起,死亡上千人.只有科学设置交通管制,人人遵守交通规则,才能保证行人的生命安全.如图所示,停车线AB与前方斑马线边界CD间的距离为30m.可看做质点的汽车以54km/h的速度向北匀速行驶,当车前端刚驶过停车线AB,该车前方的机动车交通信号灯由绿灯变为黄灯.
(1)若此时前方C处人行横道路边等待的行人就抢先过马路,汽车司机发现行人,立即制动,汽车的加速度大小为3.75m/s2.求汽车的制动距离;
(2)若人人遵守交通规则,该车将不受影响地驶过前方斑马线边界CD.为确保行人安全,D处人行横道信号灯应该在南北向机动车信号灯变黄灯后至少多久变为绿灯?

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

6.图示为一质点在0~4s内做直线运动的v-t图象.由图可得(  )
A.在1s~3s内,合力对质点做正功
B.在0~1s,合力对质点不做功
C.在0~1s和3s~4s内,合力对质点做的功相同
D.在0~4s内,合力对质点做的功为零

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.如图所示,在以O1点为圆心、r=0.20m为半径的圆形区域内,存在着方向垂直纸面向里,磁感应强度大小为B=1.0×10-3的匀强磁场(图中未画出).圆的左端跟y轴相切于直角坐标系原点O,右端与一个足够大的荧光屏MN相切于x轴上的A点,粒子源中,有带正电的粒子(比荷为$\frac{q}{m}$=1.0×1010C/kg)不断地由静止进入电压U=800V的加速电场.经加速后,沿x轴正方向从坐标原点O射入磁场区域,粒子重力不计.
(1)求粒子在磁场中做圆周运动的半径、速度偏离原来方向的夹角的正切值.
(2)以过坐标原点O并垂直于纸面的直线为轴,将该圆形磁场逆时针缓慢旋转90°,求在此过程中打在荧光屏MN上的粒子到A点的最远距离.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

4.已知人造航天器在某行星表面上空绕行星做匀速圆周运动,绕行方向与行星自转方向相同(人造航天器周期小于行星的自转周期),经过时间t(t小于航天器的绕行周期),航天器运动的弧长为s,航天器与行星的中心连线扫过角度为θ,引力常量为G,航天器上的人两次相邻看到行星赤道上的标志物的时间间隔是△t,这个行星的同步卫星的离行星的球心距离(  )
A.$\frac{s△t}{(2πt-θ△t)}$B.$\frac{s△t}{(θ△t-2πt)}$
C.$\frac{s}{θ}\root{3}{{\frac{{{θ^2}△{t^2}}}{{{{(2πt-θ△t)}^2}}}}}$D.$\frac{s}{θ}\root{3}{{\frac{{{θ^2}△{t^2}}}{{{{(θ△t-2πt)}^2}}}}}$

查看答案和解析>>

同步练习册答案