精英家教网 > 高中物理 > 题目详情
3.同步卫星与地心的距离为r1,运行速率为v1,向心加速度为a1;近地卫星运行速率为v2,向心加速度为a2;地球赤道上的物体随地球自转的速率为v3,向心加速度为a3;地球半径为r,则下列比值正确的是(  )
①$\frac{{v}_{1}}{{v}_{2}}$=$\sqrt{\frac{r}{{r}_{1}}}$   ②$\frac{{v}_{1}}{{v}_{3}}$=$\frac{{r}_{1}}{r}$  ③$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{r}^{2}}{{{r}_{1}}^{2}}$   ④$\frac{{a}_{1}}{{a}_{3}}$=$\frac{{{r}_{1}}^{2}}{{r}^{2}}$.
A.①③B.②④C.①③D.①②

分析 同步卫星的角速度和地球自转的角速度相等,根据a=rω2得出物体随地球自转的向心加速度与同步卫星的加速度之比.根据万有引力提供向心力求出线速度与轨道半径的关系,从而求出近地卫星和同步卫星的线速度之比.

解答 解:①、根据万有引力提供向心力G$\frac{Mm}{{r}^{2}}$=m$\frac{{v}^{2}}{r}$ 得:$\frac{{v}_{1}}{{v}_{2}}$=$\sqrt{\frac{r}{{r}_{1}}}$,故①正确,
②、同步卫星的角速度和地球自转的角速度相等,由v=ωr得:$\frac{{v}_{1}}{{v}_{3}}$=$\frac{{r}_{1}}{r}$.故②正确;
③、根据万有引力提供向心力G$\frac{Mm}{{r}^{2}}$=ma,得:$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{r}^{2}}{{r}_{1}^{2}}$,故③错误;
④、同步卫星的角速度和地球自转的角速度相等,根据a=rω2得:$\frac{{a}_{1}}{{a}_{3}}$=$\frac{{r}_{1}}{r}$.故④错误;
故选:D.

点评 解决本题的关键知道同步卫星的特点,以及掌握万有引力提供向心力这一理论,并能灵活运用.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

13.一质点做简谐运动的图象如图所示,下列说法正确的是(  )
A.0~1s速度在增大B.0~1s位移在增大
C.2~3s加速度在增大D.2~3s位移在增大

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

14.我国“玉兔号”月球车被顺利送抵月球表面,并发回大量图片和信息.若该月球车在地球表面的重力为G1,在月球表面的重力为G2.已知地球半径为R1,月球半径为R2,地球表面处的重力加速度为g,则(  )
A.“玉兔号”月球车在地球表面与月球表面质量之比为1:1
B.地球的质量与月球的质量之比为$\frac{{G}_{1}{{R}_{2}}^{2}}{{G}_{2}{{R}_{1}}^{2}}$
C.地球表面处的重力加速度与月球表面处的重力加速度之比为$\frac{{G}_{2}}{{G}_{1}}$
D.地球的第一宇宙速度与月球的第一宇宙速度之比为$\sqrt{\frac{{G}_{1}{R}_{1}}{{G}_{2}{R}_{2}}}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

11.长度为L细绳,一端系有一质量为m的小球,小球以O点为圆心在竖直面内做圆周运动,求:
(1)当小球刚好通过最高点时的速率V1为多大?
(2)若小球到达最低点时速度为V2,则在此时细绳受到的拉力?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

18.物体做圆周运动时所需的向心力F由物体运动情况决定,合力提供的向心力F由物体受力情况决定.若某时刻F=F,则物体能做圆周运动;若F>F,物体将做离心运动;若F<F,物体将做近心运动.现有一根长L=1m的刚性轻绳,其一端固定于O点,另一端系着质量m=0.5kg的小球(可视为质点),将小球提至O点正上方的A点处,此时绳刚好伸直且无张力,如图所示.不计空气阻力,g取10m/s2,则:
(1)为保证小球能在竖直面内做完整的圆周运动,在A点至少应施加给小球多大的水平速度?
(2)在小球以速度v1=4m/s水平抛出的瞬间,绳中的张力为多少?
(3)在小球以速度v2=2m/s水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

8.发射某探月卫星时,首先使其环绕地球表面做圆周运动,线速度为v1,环绕周期为T1,月球附近时,控制卫星使其绕月球表面做圆周运动,线速度为v2,环绕周期为T2,若两球的质量分别为M1,M2,则$\frac{{M}_{1}}{{M}_{2}}$(  )
A.$\frac{{{T}_{1}v}_{2}}{{{T}_{2}v}_{1}}$B.$\frac{{{T}_{1}v}_{2}^{3}}{{{T}_{2}v}_{1}^{3}}$
C.$\frac{{{T}_{1}v}_{1}}{{{T}_{2}v}_{2}}$D.$\frac{{{T}_{1}v}_{1}^{3}}{{{T}_{2}v}_{2}^{3}}$

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

15.如图,真空中有一个边长为L的正方体,正方体的两个顶点M、N处分别放置一对电荷量都为q的正、负点电荷.图中的a、b、c、d是其它的四个顶点,k为静电力常量,下列表述正确是(  )
A.a、b两点电场强度相同
B.a点电势高于b点电势
C.把点电荷+Q从c移到d,电势能增加
D.M点的电荷受到的库仑力大小为F=k$\frac{q^2}{{2{L^2}}}$

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

12.一质量为m的行星以某恒星为中心天体旋转,与恒星距离为r,周期为T,则行星的线速度为$\frac{2πr}{T}$,恒星的质量为$\frac{4{π}^{2}{r}^{3}}{G{T}^{2}}$,若该恒星半径为R,则恒星的密度为$\frac{3π{r}^{3}}{G{T}^{2}{R}^{3}}$.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

4.如图所示,在直角坐标系的第Ⅰ象限存在垂直纸面向里的匀强磁场,磁感应强度B=0.2T,第Ⅳ象限分布着竖直向上的匀强电场,场强E=4.0×103V/m.现从图中M(1.8,-1.0)点由静止释放一比荷$\frac{q}{m}$=2×105C/kg的带正电的粒子,该粒子经过电场加速后经x轴上的P点进入磁场,在磁场中运动一段时间后经y轴上的N点离开磁场.不计重力,求:
(1)求粒子到达P点时的速度v
(2)N点的纵坐标;
(3)若仅改变匀强电场的场强大小,粒子仍由M点释放,为使粒子还从N点离开场区,求电场强度改变后的可能值.

查看答案和解析>>

同步练习册答案