类型:B
2008年普通高等学校招生全国统一考试(广东卷)
数学(理科)
本试卷共4页,21小题,满分150分.考试用时120分钟.
注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(B)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
4.作答选做题时,请先用2B铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.
5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.
参考公式:如果事件
互斥,那么
.
已知
是正整数,则
.
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知
,复数
的实部为
,虚部为1,则
的取值范围是( )
A.
B.
C.
D.![]()
2.记等差数列
的前
项和为
,若
,
,则
( )
A.16 B.24 C.36 D.48
一年级
二年级
三年级
女生
373
![]()
![]()
男生
377
370
![]()
3.某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )
A.24 B.18 C.16 D.12 表1
4.若变量
满足
则
的最大值是( )
A.90 B.80 C.70 D.40
5.将正三棱柱截去三个角(如图1所示
分别是
三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )
![]()
6.已知命题
所有有理数都是实数,命题
正数的对数都是负数,则下列命题中为真命题的是( )
A.
B.
C.
D.![]()
7.设
,若函数
,
有大于零的极值点,则( )
A.
B.
C.
D.![]()
8.在平行四边形
中,
与
交于点
是线段
的中点,
的延长线与
交于点
.若
,
,则
( )
A.
B.
C.
D.![]()
(一)必做题(9~12题)
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.
![]()
(注:框图中的赋值符号“
”也可以写成“
”或“
”)
10.已知
(
是正整数)的展开式中,
的系数小于120,则
.
11.经过圆
的圆心
,且与直线
垂直的直线方程是 .
12.已知函数
,
,则
的最小正周期是
.
二、选做题(13―15题,考生只能从中选做两题)
13.(坐标系与参数方程选做题)已知曲线
的极坐标方程分别为
,
,则曲线
与
交点的极坐标为
.
14.(不等式选讲选做题)已知
,若关于
的方程
有实根,则
的取值范围是
.
15.(几何证明选讲选做题)已知
是圆
的切线,切点为
,
.
是圆
的直径,
与圆
交于点
,
,则圆
的半径
.
三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.
16.(本小题满分13分)
已知函数
,
的最大值是1,其图像经过点
.
(1)求
的解析式;
(2)已知
,且
,
,求
的值.
17.(本小题满分13分)
随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为
.
(1)求
的分布列;
(2)求1件产品的平均利润(即
的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为
,一等品率提高为
.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
18.(本小题满分14分)
设
,椭圆方程为
,抛物线方程为
.如图4所示,过点
作
轴的平行线,与抛物线在第一象限的交点为
,已知抛物线在点
的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设
分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
![]()
![]()
19.(本小题满分14分)
设
,函数
,
,
,试讨论函数
的单调性.
20.(本小题满分14分)
如图5所示,四棱锥
的底面
是半径为
的圆的内接四边形,其中
是圆的直径,
,
,
垂直底面
,
,
分别是
上的点,且
,过点
作
的平行线交
于
.
(1)求
与平面
所成角
的正弦值;
(2)证明:
是直角三角形;
(3)当
时,求
的面积.
21.(本小题满分12分)
设
为实数,
是方程
的两个实根,数列
满足
,
,
(
…).
(1)证明:
,
;
(2)求数列
的通项公式;
(3)若
,
,求
的前
项和
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com