20. 一个圆切直线于点.且圆心在直线 上. (1)求该圆的方程, (2)求经过原点的直线被圆截得的最短弦的长. 查看更多

 

题目列表(包括答案和解析)

.(本题满分12分)已知焦点在x轴上的双曲线C的两条渐近线经过坐标原点,并且两条渐近线与以点为圆心、1为半径的圆相切,双曲线C的一个焦点与点A关于直线对称. (1)求双曲线C的渐近线和双曲线的方程; (2)设直线与双曲线C的左支交于P、Q两点,另一直线经过及线段PQ的中点N,求直线轴的截距的取值范围.

查看答案和解析>>

(本题满分12分)已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.

 

查看答案和解析>>

(本题满分12分)已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.

查看答案和解析>>

(本题满分12分)已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.

查看答案和解析>>

(本小题满分12分)

已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的动直线L交椭圆CAB两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.

 

查看答案和解析>>


同步练习册答案