(本小题满分12分)
已知椭圆
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
的动直线L交椭圆C于A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.
解:(Ⅰ)由![]()
因直线
相切,
,∴
,………………2分
∵圆
的两焦点与短轴的一个端点的连线构成等腰直角三角
形,∴
………………4分
故所求椭圆方程为
………………5分
(Ⅱ)当L与x轴平行时,以AB为直径的圆的方程:![]()
当L与x轴垂直时,以AB为直径的圆的方程:![]()
由![]()
即两圆公共点(0, 1)
因此,所求的点T如果存在,只能是(0,1) ………………7分
(ⅰ)当直线L斜率不存在时,以AB为直径的圆过点T(0,1)
(ⅱ)若直线L斜率存在时,可设直线L:![]()
由![]()
记点
.
………………9分
![]()
∴TA⊥TB, ………………11分
综合(ⅰ)(ⅱ),以AB为直径的圆恒过点T(0,1). ……………12分
【解析】略
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com