书架上竖排着六本数.现将新购的3本书上架.要求不调乱书架上原有的书.那么不同的上架方式共有多少种? 查看更多

 

题目列表(包括答案和解析)

(2008•成都三模)如图1,在平行四边形ABCD中,AB=1,BD=
2
,∠ABD=90°,E是BD上的一个动点.现将该平行四边形沿对角线BD折成直二面角A-BD-C,如图2所示.
(1)若F、G分别是AD、BC的中点,且AB∥平面EFG,求证:CD∥平面EFG;
(2)当图1中AE+EC最小时,求图2中二面角A-EC-B的大小.

查看答案和解析>>

在平面直角坐标系xOy中,已知圆C1:(x-1)2+y2=16,圆C2:(x+1)2+y2=1,点S为圆C1上的一个动点,现将坐标平面折叠,使得圆心C2(-1,0)恰与点S重合,折痕与直线SC1交于点P.
(1)求动点P的轨迹方程;
(2)过动点S作圆C2的两条切线,切点分别为M、N,求MN的最小值;
(3)设过圆心C2(-1,0)的直线交圆C1于点A、B,以点A、B分别为切点的两条切线交于点Q,求证:点Q在定直线上.

查看答案和解析>>

如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在轴的正半轴上,O为坐标原点.现将正方形OABC绕O点按顺时针方向旋转.

 (1)当点A第一次落到轴正半轴上时,求边BC在旋转过程中所扫过的面积;

 (2)若线段AB与轴的交点为M(如图2),线段BC与直线的交点为N.设的周长为,在正方形OABC旋转的过程中值是否有改变?并说明你的结论;

(3)设旋转角为,当为何值时,的面积最小?求出这个最小值, 并求出此时△BMN的内切圆半径.

      

 

查看答案和解析>>

如图1,在平行四边形ABCD中,AB=1,BD,∠ABD=90°,EBD上的一个动点,现将该平行四边形沿对角线BD折成直二面角ABDC,如图2所示.

(1)若FG分别是ADBC的中点,且AB∥平面EFG,求证:CD∥平面EFG

(2)当图1中AEEC最小时,求图2中二面角AECB的大小.

 

查看答案和解析>>

如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在轴的正半轴上,O为坐标原点.现将正方形OABC绕O点按顺时针方向旋转.
 (1)当点A第一次落到轴正半轴上时,求边BC在旋转过程中所扫过的面积;
 (2)若线段AB与轴的交点为M(如图2),线段BC与直线的交点为N.设的周长为,在正方形OABC旋转的过程中值是否有改变?并说明你的结论;
(3)设旋转角为,当为何值时,的面积最小?求出这个最小值, 并求出此时△BMN的内切圆半径.

      

查看答案和解析>>


同步练习册答案