19.设数列的通项公式为. 数列定义如下:对于正整数m.是使得不等式成立的所有n中的最小值. (1)若.求, (2)若.求数列的前2m项和公式. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)设数列的通项公式为. 数列定义如下:对于正整数m是使得不等式成立的所有n中的最小值.(1)若,求

(2)若,求数列的前2m项和公式.

查看答案和解析>>

设数列[an}的通项公式为an=2n-3(n∈N*),数列[bm}定义如下:对于正整数m,bm是使得不等式an≤m成立的所有n中的最大值,则b2=
2
2

查看答案和解析>>

设数列{an}的通项公式为an=an+b(n∈N*,a>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10
(2)若a=2,b=-1,求数列{bm}的前2m项和公式;  
(3)是否存在a和b,使得bm=3m+2(m∈N*)?如果存在,求a和b的取值范围;如果不存在,请说明理由.

查看答案和解析>>

设数列{an}的通项公式为an=an+b(n∈N*,a>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10
(2)若a=2,b=-1,求数列{bm}的前2m项和公式.

查看答案和解析>>

设数列{an}的通项公式为an=an+b(n∈N*,a>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10
(2)若a=2,b=-1,求数列{bm}的前2m项和公式;  
(3)是否存在a和b,使得bm=3m+2(m∈N*)?如果存在,求a和b的取值范围;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案