2.2对物理过程的整体处理 例14.质量为0.1kg的小球.在离地面1.8m的高处自由落下.跟地面碰撞后弹回的最大高度为0.8m.整体过程所用时间为1.1s.求碰撞时地面对小球的平均作用力大小为何值? 解:把小球从1.8m高处落下直到弹回到0.8m高处的全过程看作一个整体.小球的动量变化为零.则...所以.则 说明:本题常规解法是把整个运动分成三个阶段--小球下落阶段.与地面碰撞阶段.上升阶段.这样必须求出刚触地时的速度v1和离开地面时的速度v2.在碰撞阶段应用动量定理列式显然比应用整体法要繁琐些. 例15.如图(12)所示.一质量为0.5kg的小滑块.从高1m的倾角为30°的固定斜面顶端由静止开始下滑.滑块与斜面间的动摩擦因数为.滑块滑到底端时与垂直于斜面的挡板发生没有能量损失的碰撞.则滑块从开始运动到最后静止通过的总路程是多少? 解:把滑块下滑.碰撞.上滑.反复无数次作为一个整体.设总路程为S.根据动能定理.∴S=4m. 查看更多

 

题目列表(包括答案和解析)

[物理--选修3-3]
(1)下列说法中正确的是
A.对于一定质量的理想气体,当温度升高时,分子的平均动能增大,则气体的压强一定增大
B.对于一定质量的理想气体,当体积减小时,单位体积的分子数增多,则气体的压强一定增大
C.压缩一定质量的理想气体,其内能一定增加
D.分子a从很远处趋近固定不动的分子b,当分子a运动到与分子b的相互作用力为零时,分子a的动能一定最大
(2)如图所示,一直立的气缸用一质量为m的活塞封闭一定质量的理想气体,活塞横截面积为S,气体最初的体积为V,气体最初的压强为;汽缸内壁光滑且缸壁是导热的.开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,设周围环境温度保持不变,已知大气压强为p,重力加速度为g.求:
①活塞停在B点时缸内封闭气体的体积V;
②整个过程中通过缸壁传递的热量Q(一定质量理想气体的内能仅由温度决定).

查看答案和解析>>

[物理--选修3-3]
(1)下列说法中正确的是
A.对于一定质量的理想气体,当温度升高时,分子的平均动能增大,则气体的压强一定增大
B.对于一定质量的理想气体,当体积减小时,单位体积的分子数增多,则气体的压强一定增大
C.压缩一定质量的理想气体,其内能一定增加
D.分子a从很远处趋近固定不动的分子b,当分子a运动到与分子b的相互作用力为零时,分子a的动能一定最大
(2)如图所示,一直立的气缸用一质量为m的活塞封闭一定质量的理想气体,活塞横截面积为S,气体最初的体积为V,气体最初的压强为;汽缸内壁光滑且缸壁是导热的.开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,设周围环境温度保持不变,已知大气压强为p,重力加速度为g.求:
①活塞停在B点时缸内封闭气体的体积V;
②整个过程中通过缸壁传递的热量Q(一定质量理想气体的内能仅由温度决定).

查看答案和解析>>

[物理--选修3-3]
(1)下列说法中正确的是
A.对于一定质量的理想气体,当温度升高时,分子的平均动能增大,则气体的压强一定增大
B.对于一定质量的理想气体,当体积减小时,单位体积的分子数增多,则气体的压强一定增大
C.压缩一定质量的理想气体,其内能一定增加
D.分子a从很远处趋近固定不动的分子b,当分子a运动到与分子b的相互作用力为零时,分子a的动能一定最大
(2)如图所示,一直立的气缸用一质量为m的活塞封闭一定质量的理想气体,活塞横截面积为S,气体最初的体积为V,气体最初的压强为;汽缸内壁光滑且缸壁是导热的.开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,设周围环境温度保持不变,已知大气压强为p,重力加速度为g.求:
①活塞停在B点时缸内封闭气体的体积V;
②整个过程中通过缸壁传递的热量Q(一定质量理想气体的内能仅由温度决定).

查看答案和解析>>

(2011?长春二模)[物理--选修3-3]
(1)下列说法中正确的是
A.对于一定质量的理想气体,当温度升高时,分子的平均动能增大,则气体的压强一定增大
B.对于一定质量的理想气体,当体积减小时,单位体积的分子数增多,则气体的压强一定增大
C.压缩一定质量的理想气体,其内能一定增加
D.分子a从很远处趋近固定不动的分子b,当分子a运动到与分子b的相互作用力为零时,分子a的动能一定最大
(2)如图所示,一直立的气缸用一质量为m的活塞封闭一定质量的理想气体,活塞横截面积为S,气体最初的体积为V0,气体最初的压强为
p02
;汽缸内壁光滑且缸壁是导热的.开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,设周围环境温度保持不变,已知大气压强为p0,重力加速度为g.求:
①活塞停在B点时缸内封闭气体的体积V;
②整个过程中通过缸壁传递的热量Q(一定质量理想气体的内能仅由温度决定).

查看答案和解析>>

(1)正电子发射计算机断层显像(PET)的基本原理是:将放射性同位素15 O注入人体,参与人体的代谢过程,15 O在人体内衰变放出正电子,与人体内负电子相遇而湮灭转化为一对光子,被探测器探测到,经计算机处理后产生清晰的图像,根据PET原理,回答下列问题。

①写出15 O的衰变和正负电子湮灭的方程式                          

②将放射性同位素15 O注入人体,15 O的主要用途是                  

A.利用它的射线   B.作为示踪原子

C.参与人体的代谢过程   D.有氧呼吸

③设电子的质量为m,所带电荷量为q,光速为c,普朗克常量为h,则探测到的正负电子湮灭后生成的光子的波长=                    

④PET中所选的放射性同位素的半衰期应                。(填“长”、“短”或“长短均可”)

(2)在原子核物理中,研究核子与核子关系的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似、两个小球A和B用轻质弹簧相连。在光滑水平直轨道上处于静止状态。在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图所示。C与B发生碰撞并立即结成一个整体D。在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰撞后A、D都静止不动,A与P接触而不粘连。过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失)。已知A、B、C三球的质量均为m。

    ①求弹簧长度刚被锁定后A球的速度。

②求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。

查看答案和解析>>


同步练习册答案