知直线y=x+4与x轴.y轴分别相交于点A.B.点M是线段AB上的动点.以点M为圆心.OM的长为半径作圆.与x轴.y轴分别相交于点C.D. (1)设点M的横坐标为a.则点C的坐标为 .点D的坐标为 , (2)求证:AC=BD, (3)若过点D作直线AB的垂线.垂足为E. ①求证: AB=2ME, ②是否存在点M.使得AM=BE?若存在.求出点M的坐标,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

已知直线y=
12
x+b
与x轴、y轴交于不同的两点A和B,S△AOB≤4,则b的取值范围是
 

查看答案和解析>>

如图,已知直线y=
4
3
x+4与x轴、y轴分别相交于点A、B,点C从O点出发沿射线OA以每秒1个单位长度的速度匀速运动,同时点D从A点出发沿AB以每秒1个单位长度的速度向B点匀速运动,当点D到达B点时C、D都停止运动.点E是CD的中点,直线EF⊥CD交y轴于点F,点E′与E点关于y轴对称.点C、D的运动时间为t(秒).
(1)当t=1时,AC=
2
2
,点D的坐标为
-
12
5
4
5
-
12
5
4
5

(2)设四边形BDCO的面积为S,当0<t<3时,求S与t的函数关系式;
(3)当直线EF与△AOB的一边垂直时,求t的值;
(4)当△EFE′为等腰直角三角形时,直接写出t的值.

查看答案和解析>>

精英家教网已知直线y=kx+1与x轴交于点A,与y轴交于点B,与抛物线y=ax2-x+c交于点A和点C(
1
2
5
4
),抛物线的顶点为D.
(1)求直线和抛物线的解析式;
(2)求△ABD的面积.

查看答案和解析>>

(2012•郴州)阅读下列材料:
    我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=
|A×m+B×n+C|
A2+B2


    例:求点P(1,2)到直线y=
5
12
x-
1
6
的距离d时,先将y=
5
12
x-
1
6
化为5x-12y-2=0,再由上述距离公式求得d=
|5×1+(-12)×2+(-2)|
52+(-12)2
=
21
13

    解答下列问题:
    如图2,已知直线y=-
4
3
x-4
与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
    (1)求点M到直线AB的距离.
    (2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

已知直线y=
x
2
+3
与x轴、y轴分别交于点A、B,把二次函数y=-
x2
4
的图象经过先左右后上下二次平移,使它经过点A、B,求平移后的函数解析式.

查看答案和解析>>


同步练习册答案