以OC为始边.作∠COD=∠A 查看更多

 

题目列表(包括答案和解析)

作图题
(1)请在同一个数轴上用尺规作出表示
2
的点M;
(2)以
2
为直角边长作等腰直角△ABC,∠C为直角;
(3)求作斜边AB的垂直平分线l与∠A的角平分线AM的交点P.

查看答案和解析>>

(2013•长春)如图,在平面直角坐标系中,抛物线y=ax2+bx-2 与x轴交于点A(-1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.
(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.
(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
))

查看答案和解析>>

如图,以1为直角边长作直角三角形,以它的斜边长和1为直角边作第二个直角三角形,再以它的
斜边和1为直角边作第三个直角三角形,则第三个直角三角形的斜边长为
2
2
.以此类推,所得第n个直角三角形的斜边长为
n+1
n+1

查看答案和解析>>

(2013•江宁区二模)如图1,在平面直角坐标系中,二次函数y=-x2-2x+2的图象与y轴交于点C,以OC为一边向左侧作正方形OCBA.

(1)判断点B是否在二次函数y=-x2-2x+2的图象上?并说明理由;
(2)用配方法求二次函数y=-x2-2x+2的图象的对称轴;
(3)如图2,把正方形OCBA绕点O顺时针旋转α后得到正方形A1B1C1O(0°<α<90°).
①当tanα﹦
12
时,二次函数y=-x2-2x+2的图象的对称轴上是否存在一点P,使△PB1C1为直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
②在二次函数y=-x2-2x+2的图象的对称轴上是否存在一点P,使△PB1C1为等腰直角三角形?若存在,请直接写出此时tanα的值;若不存在,请说明理由﹒

查看答案和解析>>

如图1,在直角坐标系xoy中,抛物线L:y=-x2-2x+2与y轴交于点C,以OC为一边向左侧作正方形OCBA上;如图2,把正方形OCBA绕点O顺时针旋转α后得到正方形A1B1C1O(0°<α<90°)﹒
(1)B、C两点的坐标分别为
 
 

(2)当tanα﹦
12
时,抛物线L的对称轴上是否存在一点P,使△PB1C1为直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)在抛物线L的对称轴上是否存在一点P,使△PB1C1为等腰直角三角形?若存在精英家教网,请直接写出此时tanα的值;若不存在,请说明理由﹒

查看答案和解析>>


同步练习册答案