解:设BC=3k.AC=k 查看更多

 

题目列表(包括答案和解析)

如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.

(1)求线段BG的长;

解:

 


(2)求证:DG平分∠EDF;

证:

(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.

证:

查看答案和解析>>

精英家教网如图所示,⊙I是Rt△ABC(∠C=90°)的内切圆,⊙I和三边分别切于点D,E,F.
(1)求证:四边形IDCE是正方形;
(2)设BC=a,AC=b,AB=C,求内切圆I的半径.

查看答案和解析>>

如图,在直角梯形ACED中,∠C=∠E=90°,BC=DE,AC=BE.设BC=a,AC=b,AB=c,试利用该图形证明勾股定理.

查看答案和解析>>

(2013•河池)如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.
(1)求证:△ABD≌△FBC;
(2)如图(2),已知AD=6,求四边形AFDC的面积;
(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c2≠a2+b2.在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).

查看答案和解析>>

(2012•天河区一模)如图(1),AB、BC、CD分别与⊙O相切于点E、F、G,且AB∥CD,若OB=6,OC=8,
(1)求BC和OF的长;
(2)求证:E、O、G三点共线;
(3)小叶从第(1)小题的计算中发现:等式
1
OF2
=
1
OB2
+
1
OC2
成立,于是她得到这样的结论:
如图(2),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,CD=h,则有等式
1
a2
+
1
b2
=
1
h2
成立.请你判断小叶的结论是否正确,若正确,请给予证明,若不正确,请说明理由.

查看答案和解析>>


同步练习册答案