19. 解方程: 20 试比较下面两个几何图形的异同.请分别写出它们的两个相同点和两个不同点. 例如:相同点:正方形的对角线相等.正五边形的对角线也相等. 不同点:正方形是中心对称图形.正五边形不是中心对称图形. 相同点(1) , (2) 不同点:(1) ,(2) 查看更多

 

题目列表(包括答案和解析)

下列各题方程的解法中,正确的是

A.解方程:       B.解方程:

解:去分母,得               解:去括号,得

             

移项、合并同类项,得             x=1

C.解方程:     D.解方程:

解:原方程就是              解:去分母,得

            

                         

 

查看答案和解析>>

(2004 深圳南山)解方程:

查看答案和解析>>

  阅读材料,解答问题

  阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则(x2-1)2=y2,原方程化为y2-5y+4=0①解得y1=1y2=4

  当y=1时,x2-1=1∴ x2=2∴ x=±;当y=4时,x2-1=4∴ x2=5∴ x±

  ∴ 原方程的解为x1=x2=-x3=x4=-

  解答问题:(1)填空:在由原方程得到方程①的过程中,利用________法达到了降次的目的,体现了________的数学思想.

  (2)-o解方程x4-x2-6=0

 

查看答案和解析>>

用“拆项法”解分式方程

  大家知道,解分式方程的基本方法是,把方程的两边同乘以各分母的最简公分母,化为整式方程来解,而对于一些特殊的分式方程来说,采用上述方法往往越解越繁.下面我们介绍一种简捷、明快的方法--拆项法.

  例:解方程

  解:先降低方程中各分式分子的次数,将原方程变形为

  即(4+)-(7+)=(1-)-(4-)

  整理得

  两边各自通分得

  

  ∴(x-2)(x-1)=(x-7)(x-6)

  即x2-3x+2=x2-13x+42

  也即10x=40  ∴x=4

  经检验知,x=4是原方程的根.

请你运用上述方法,解分式方程

查看答案和解析>>

(2002 江苏盐城)

解方程

查看答案和解析>>


同步练习册答案