解:(1)作BE⊥OA.∴ΔAOB是等边三角形∴BE=OB·sin60o=.∴B(,2) ∵A(0,4),设AB的解析式为,所以,解得, 以直线AB的解析式为 (2)由旋转知.AP=AD, ∠PAD=60o, ∴ΔAPD是等边三角形.PD=PA= 如图.作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30° ∴GD=BD=,DH=GH+GD=+=, ∴GB=BD=,OH=OE+HE=OE+BG= ∴D(,) 可得D()若ΔOPD的面积为: 解得:所以P(,0) 查看更多

 

题目列表(包括答案和解析)

解:作BE⊥l于点E,DF⊥l于点F.                   ……2分

∵∠α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,

∴∠ADF=∠α=36°.根据题意,得BE=24mm, DF=48mm. ……4分

在Rt△ABE中,sinα=BE/AB,∴AB=BE/sin36°=40(mm).……6分

在Rt△ADF中,cos∠ADF=DF/AD,∴AD=DF/COS36°=60(mm).8分

∴矩形ABCD的周长=2(40+60)=200(mm).             ……10分

查看答案和解析>>

精英家教网如图,梯形ABCD中,AD∥BC,AC与BD相交于O点,过点B作BE∥CD交CA的延长线于点E.求证:OC2=OA•OE.

查看答案和解析>>

精英家教网如图,已知等腰Rt△AOB,其中∠AOB=90°,OA=OB=2,E、F为斜边AB上的两个动点(E比F更靠近A),满足∠EOF=45°,
(1)求证:△AOF∽△BEO;
(2)求AF•BE的值;
(3)作EM⊥OA于M,FN⊥OB于N,求OM•ON的值;
(4)求线段EF长的最小值.(提示:必要时可以参考以下公式:当x>0,y>0时,x+y=(
x
-
y
)2+2
xy
x+
1
x
=(
x
-
1
x
)2+2

查看答案和解析>>

(2012•恩施州)如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.
(1)求证:BC是⊙O的切线;
(2)连接AF、BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA=
513
,求⊙O的半径.

查看答案和解析>>

(2012•昌平区二模)如图,已知:反比例函数y=
kx
(x<0)的图象经过点A(-2,4)、B(m,2),过点A作AF⊥x轴于点F,过点B作BE⊥y轴于点E,交AF于点C,连接OA.
(1)求反比例函数的解析式及m的值;
(2)若直线l过点O且平分△AFO的面积,求直线l的解析式.

查看答案和解析>>


同步练习册答案