4.理解因式分解的意义.掌握提取公因式法.分组分解法.公式法和二次系数为1时的十字相乘法等因式分解的基本方法(在因式分解中.所涉及的多项式不超过四项,不涉及添项.拆项等偏重技巧性的要求.用公式法分解因式时.只涉及平方差公式和完全平方公式.不要求掌握用十字相乘法对二次项系数不等于1的二次三项式进行因式分解,关于一般的二次三项式的因式分解.将通过后续学习主要掌握求根公式法). 查看更多

 

题目列表(包括答案和解析)

精英家教网根据多项式的乘法与因式分解的关系,可得x2-x-6=(x+2)(x-3),右边的两个一次两项式的系数有关系11×-32,左边上、下角两数积是原式左边二次项的系数,右边两数积是原式左边常数项,交叉相乘积之和是原式左边一次项的系数.这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题.
(1)填空:
①分解因数:6x2-x-2=
 

②解方程:3x2+x-2=0,左边分解因式得(
 
)(
 
)=0,∴x1=
 
,x2=
 

(2)解方程x2+
2x2-3
=0

查看答案和解析>>

阅读理解:把多项式am+an+bm+bn分解因式.
解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)
解法二:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b)
观察上述因式分解的过程,回答下列问题:
(1)分解因式:mx-2m+nx-2n
(2)已知:a,b,c为△ABC的三边,且a2-ab+4ac-4bc=0,试判断△ABC的形状.

查看答案和解析>>

阅读理解:把多项式am+an+bm+bn分解因式.
解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)
解法二:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b)
观察上述因式分解的过程,回答下列问题:
(1)分解因式:mx-2m+nx-2n
(2)已知:a,b,c为△ABC的三边,且a2-ab+4ac-4bc=0,试判断△ABC的形状.

查看答案和解析>>

根据多项式的乘法与因式分解的关系,可得x2-x-6=(x+2)(x-3),右边的两个一次两项式的系数有关系11×-32,左边上、下角两数积是原式左边二次项的系数,右边两数积是原式左边常数项,交叉相乘积之和是原式左边一次项的系数.这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题.
(1)填空:
①分解因数:6x2-x-2=______.
②解方程:3x2+x-2=0,左边分解因式得(______)(______)=0,∴x1=______,x2=______.
(2)解方程

查看答案和解析>>

根据多项式的乘法与因式分解的关系,可得x2-x-6=(x+2)(x-3),右边的两个一次两项式的系数有关系11×-32,左边上、下角两数积是原式左边二次项的系数,右边两数积是原式左边常数项,交叉相乘积之和是原式左边一次项的系数.这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题.
(1)填空:
①分解因数:6x2-x-2=______.
②解方程:3x2+x-2=0,左边分解因式得(______)(______)=0,∴x1=______,x2=______.
(2)解方程数学公式

查看答案和解析>>


同步练习册答案