19. (1)证明:在△ACD与△ABE中. ∵∠A=∠A.∠ADC=∠AEB=90°.AB=AC. ∴ △ACD≌△ABE.-------- 3分 ∴ AD=AE. --------4分 (2) 互相垂直 --------5分 在Rt△ADO与△AEO中. ∵OA=OA.AD=AE. ∴ △ADO≌△AEO. --------------6分 ∴ ∠DAO=∠EAO. 即OA是∠BAC的平分线. ---------------7分 又∵AB=AC. ∴ OA⊥BC. ---------------8分 查看更多

 

题目列表(包括答案和解析)

25、证明题:(1)等腰梯形的对角线交点与同一底的两个端点的距离相等.
已知:如图,等腰梯形ABCD,BC=AD,两对角线相交于O点.
求证:OA=OB.
证明:∵在△ACD与△BDC中
BC=AD(
等腰梯形的性质

∠ADC=∠BCD(
等腰梯形的性质

CD=CD
(公共边)
∴△ACD≌△BDC(
SAS

∴∠1=∠2  (
全等的性质

又∵∠DAB=∠ABC(等腰梯形的性质)
∴∠DAB-∠1=∠ABC-∠2
即:∠3=∠4(
等价代换

OA=OB
( 等角对等边)
(2)已知:如图,△ABC中BE为∠B的角平分线DE∥BC.求证:BD=DE.

查看答案和解析>>

证明题:(1)等腰梯形的对角线交点与同一底的两个端点的距离相等.
已知:如图,等腰梯形ABCD,BC=AD,两对角线相交于O点.
求证:OA=OB.
证明:∵在△ACD与△BDC中
BC=AD(______)
∠ADC=∠BCD(______)
______(公共边)
∴△ACD≌△BDC(______)
∴∠1=∠2  (______)
又∵∠DAB=∠ABC(等腰梯形的性质)
∴∠DAB-∠1=∠ABC-∠2
即:∠3=∠4(______)
∴______( 等角对等边)
(2)已知:如图,△ABC中BE为∠B的角平分线DE∥BC.求证:BD=DE.

查看答案和解析>>

证明题:(1)等腰梯形的对角线交点与同一底的两个端点的距离相等.
已知:如图,等腰梯形ABCD,BC=AD,两对角线相交于O点.
求证:OA=OB.
证明:∵在△ACD与△BDC中
BC=AD(______)
∠ADC=∠BCD(______)
______(公共边)
∴△ACD≌△BDC(______)
∴∠1=∠2 (______)
又∵∠DAB=∠ABC(等腰梯形的性质)
∴∠DAB-∠1=∠ABC-∠2
即:∠3=∠4(______)
∴______( 等角对等边)
(2)已知:如图,△ABC中BE为∠B的角平分线DE∥BC.求证:BD=DE.

查看答案和解析>>

如图1,已知△ABC与△DCE都是等腰直角三角形,AC=BC,DC=EC,∠ACB=∠DCE=90°,点D在AC上,直线BD交AE于点F.
(1)请补充完整证明“BD=AE,BF⊥AE”的推理过程;
证明:在△ACE与△BCD中
∵(
AC=BC,∠DCB=∠ECA,DC=EC
AC=BC,∠DCB=∠ECA,DC=EC

∴△ACE≌△BCD(SAS)
∴BD=AE,∠CAE=∠CBD(全等三角形的对应角相等)
∵∠ACE=90°
∴∠CAE+∠AEC=90°(
直角三角形的两锐角互余
直角三角形的两锐角互余

∴∠CBD+∠AEC=90°(等量代换)
∠BFE=90°
∠BFE=90°

∴BF⊥AE(垂直的定义)
(2)将△DCE绕着点C旋转,在旋转过程中保持△DCE的大小与形状均不变,那么,当△DCE旋转至图2的位置时,(1)中的结论是否仍然成立?为什么?

查看答案和解析>>

(1)填空:如图1,已知AB=AD,DC=BC.
证明:在△ACD和△ACB中,
AD=AB,
DC=BC
AC=AC
AC=AC

∴△ACD≌△ACB(
SSS
SSS

∴∠B=
∠D
∠D

(2)已知:如图2,AC和BD相交于点O,OA=OC,OB=OD.求证:AB=CD.

查看答案和解析>>


同步练习册答案