4.若M 且 , 求P点的坐标, 解:设P==(-4, ) ∴ ∴P点坐标为(-1, -) 考点三: 向量平行的充要条件 题型1: 平行.共线问题 [例4] (广东省高明一中2009届高三月考) 已知向量..若∥.则锐角等于( ) A. B. C. D. [解题思路]: 已知a.b的坐标.当求a//b时.运用两向量平行的充要条件x1y2-x2y1=0可求值. 解析:B 解:.故选B [名师指引]数学语言常有多种表达方式.学会转化与变通是求解的关键.本题以几何特征语言形式出现.最终落足点要变式成方程的语言来求解.这一思想方法在求解向量问题时经常用到. [新题导练] 查看更多

 

题目列表(包括答案和解析)

若M(3, -2)  N(-5, -1) 且 ,  求P点的坐标;

查看答案和解析>>

若M(3, -2)  N(-5, -1) 且 , 求P点的坐标;

查看答案和解析>>

在平面直角坐标系中,O为坐标原点,已知两点M(1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R)
,点C的轨迹与抛物线:y2=2px(p>0)交于D、E两点.
(1)
OD
⊥OE
,求抛物线的方程;
(2)过动点(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,且|AB|≤2p.
(i)求a的取值范围;
(ii)若线段AB的垂直平分线交x轴于点Q,求△QAB面积的最大值.

查看答案和解析>>

在平面直角坐标系中,O为坐标原点,已知两点M(1,-3),N(5,1),若动点C满足数学公式=t数学公式且点C的轨迹与抛物线y2=4x交于A,B两点.
(1)求证:数学公式数学公式
(2)在x轴上是否存在一点P(m,0)(m≠0),使得过点P的直线l交抛物线y2=4x于D,E两点,并以线段DE为直径的圆都过原点.若存在,请求出m的值及圆心M的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系中,O为坐标原点,已知两点M(1,-3),N(5,1),若动点C满足
NC
=t
NM
且点C的轨迹与抛物线y2=4x交于A,B两点.
(1)求证:
OA
OB

(2)在x轴上是否存在一点P(m,0)(m≠0),使得过点P的直线l交抛物线y2=4x于D,E两点,并以线段DE为直径的圆都过原点.若存在,请求出m的值及圆心M的轨迹方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案