题目列表(包括答案和解析)
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知椭圆
,常数
、
,且
.
(1)
当
时,过椭圆左焦点
的直线交椭圆于点
,与
轴交于点
,若
,求直线
的斜率;
(2)过原点且斜率分别为
和
(
)的两条直
线与椭圆
的交点为
(按逆时针顺序排列,且点
位于第一象限内),试用
表示四边形
的面积
;
(3)求
的最大值.
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
我们把定义在
上,且满足
(其中常数
满足
)的函数叫做似周期函数.
(1)若某个似周期函数
满足
且图像关于直线
对称.求证:函数
是偶函数;
(2)当
时,某个似周期函数在
时的解析式为
,求函数
,
的解析式;
(3)对于确定的
时,
,试研究似周期函数函数
在区间
上是否可能是单调函数?若可能,求出
的取值范围;若不可能,请说明理由.
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知
,且
,
,数列
、
满足
,
,
,
.
(1) 求证数列
是等比数列;
(2) (理科)求数列
的通项公式
;
(3) (理科)若
满足
,
,
,试用数学归纳法证明:
.
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知函数
.
(1) 试说明函数
的图像是由函数
的图像经过怎样的变换得到的;
(2) (理科)若函数
,试判断函数
的奇偶性,并用反证法证明函数
的最小正周期是
;
(3) 求函数
的单调区间和值域.
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设
,对于项数为
的有穷数列
,令
为
中最大值,称数列
为
的“创新数列”.例如数列
3,5,4,7的创新数列为3,5,5,7.
考查自然数
的所有排列,将每种排列都视为一个有穷数列
.
(1)若
,写出创新数列为3,4,4,4的所有数列
;
(2)是否存在数列
的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列
,使它的创新数列为等差数列?若存在,求出满足所有条件的数列
的个数;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com