题目列表(包括答案和解析)
本题14分,第(1)小题6分,第(2)小题8分)
已知函数
.
(1)用定义证明:当
时,函数
在
上是增函数;[来源:学.科.网Z.X.X.K]
(2)若函数
在
上有最小值
,求实数
的值.
(本题14分)数列
的首项
。
(1)求证
是等比数列,并求
的通项公式;
(2)已知函数
是偶函数,且对任意
均有
,当
时,
,求使
恒成立的
的取值范围。
(本小题14分) 已知函数f(x)=ax3+bx2+cx(a≠0)是定义在R上的奇函数,且x=-1时,函数取极值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤2;
(3)求证:曲线y=f(x)上不存在两个不同的点A,B,使过A, B两点的切线都垂直于直线AB。
(本题14分)已知函数
,
。
(1)当t=8时,求函数
的单调区间;
(2)求证:当
时,
对任意正实数
都成立;
(3)若存在正实数
,使得
对任意的正实数
都成立,请直接写出满足这样条件的一个
的值(不必给出求解过程)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com