如图.已知椭圆的中心在坐标原点.焦点F1.F2在x轴上.长轴A1A2的长为4.左准线l与x轴的交点为M.|MA1|∶|A1F1|=2∶1. (Ⅰ)求椭圆的方程, (Ⅱ)若点P为l上的动点.求∠F1PF2最大值. 查看更多

 

题目列表(包括答案和解析)

(2012•洛阳一模)如图,已知椭圆的中心在原点,焦点在x轴上,离心率为
3
2
,且经过点M(2,1),直线AB平行于OM,且交椭圆于A,B两点.
(1)求椭圆的方程;
(2)求直线AB在y轴上截距的取值范围;
(3)记直线MA,MB斜率分别为k1,k2.试问k1+k2是否为定值?若是,求出k1+k2的值,否则,说明理由.

查看答案和解析>>

精英家教网如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,
2
),且离心率等于
3
2
,过点M(0,2)且斜率为k的直线l与椭圆相交于P,Q不同两点(与点B不重合),椭圆与x轴的正半轴相交于点B.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若
PB
QB
=0
,求直线l的方程.

查看答案和解析>>

精英家教网如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|:|A1F1|=2:1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若点P在直线l上运动,求∠F1PF2的最大值、

查看答案和解析>>

(2012•马鞍山二模)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l交椭圆于A、B两个不同点(A、B与M不重合).
(Ⅰ)求椭圆的方程;
(Ⅱ)当MA⊥MB时,求m的值.

查看答案和解析>>

精英家教网如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>


同步练习册答案