题目列表(包括答案和解析)
(本小题满分14分)
设点A(2,2),B(5,4),O为原点,点P满足
=
+
,(t为实数);
(1)当点P在x轴上时,求实数t的值;
(2)是否存在t使得四边形OABP为平行四边形?若存在,求实数t的值;否则,说明理由.
(本小题满分14分)
某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:
![]()
(I)请画出适当的统计图(茎叶图或频率分布直方图);如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).
(Ⅱ)从甲、乙两人的10次成绩中各随机抽取一次,求抽取的成绩中至少有一个不高于 12.8秒的概率.
(III)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,
现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.
(本小题满分14分)
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
|
5 |
|
|
女生 |
10 |
|
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为
,求
的分布列与期望.
下面的临界值表供参考:
|
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:
,其中
)![]()
本小题满分14分) 已知平面区域D由
以P(1,2)、R(3,5)、Q(-3,4)为顶点的
三角形内部和边界组成
(1)写出表示区域D的不等式组
(2)设点(x,y)在区域D内变动,求目标函数
Z=2x+y的最小值;
(3)若在区域D内有无穷多个点(x,y)可使目标函数
取得最小值,求m的值。
(本小题满分14分)
设点A(2,2),B(5,4),O为原点,点P满足
=
+
,(t为实数);
(1)当点P在x轴上时,求实数t的值;
(2)是否存在t使得四边形OABP为平行四边形?若存在,求实数t的值;否则,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com