本小题满分14分) 已知平面区域D由
以P(1,2)、R(3,5)、Q(-3,4)为顶点的
三角形内部和边界组成
(1)写出表示区域D的不等式组
(2)设点(x,y)在区域D内变动,求目标函数
Z=2x+y的最小值;
(3)若在区域D内有无穷多个点(x,y)可使目标函数
取得最小值,求m的值。
,![]()
【解析】解:(1)首先求三直线PQ、QR、RP的方程.
易得直线PQ的方程为x+2y-5=0;直线QR的方程为x-6y+27=0;
直线RP的方程为3x-2y+1=0. ……………………………………………… 3分
注意到△PQR内任一点(x,y)应在直线RP、PQ的上方,而在QR的下方,故应有
……………………………………………… 5分
(2)由已知得直线:
,
取最小值时,此直线的
纵截距最小。作直线
,将直线
沿区域D平行移动,
过点Q 时Z有最小值,………………………………… 8分
所以
;…………………………………………… 9分
(3)直线
的斜率为-m,……………………………………… 10分
结合可行域可知,直线
与直线PR重合时,线段PR上任意一点都可使
取得最小值,………………………… 12分
又
,因此,
,即
……………………………………………… 14分
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com